Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
New Phytol ; 234(2): 375-391, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34882809

RESUMO

Ethylene affects many aspects of plant growth and development, including root hairs and trichomes growth in Arabidopsis, as well as fiber development in cotton, though the underlying mechanism is unclear. In this article, we update the research progress associated with the main genes in ethylene biosynthesis and signaling pathway, and we propose a clear ethylene pathway based on genome-wide identification of homologues in cotton. Expression pattern analysis using transcriptome data revealed that some candidate genes may contribute to cotton fiber development through the ethylene pathway. Moreover, we systematically summarized the effects of ethylene on the development of epidermal hair and the underlying regulatory mechanisms in Arabidopsis. Based on the knowledge of ethylene-promoted cell differentiation, elongation, and development in different tissues or plants, we advised a possible regulatory network for cotton fiber development with ethylene as the hub. Importantly, we emphasized the roles of ethylene as an important node in regulating cotton vegetative growth, and stress resistance, and suggested utilizing multiple methods to subtly modify ethylene synthesis or signaling in a tissue or spatiotemporal-specific manner to clarify its exact effect on architecture, adaptability of the plant, and fiber development, paving the way for basic research and genetic improvement of the cotton crop.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Fibra de Algodão , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Crescimento e Desenvolvimento , Tricomas
2.
BMC Genomics ; 21(1): 561, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32799801

RESUMO

BACKGROUND: GGPP (geranylgeranyl diphosphate) is produced in the isoprenoid pathway and mediates the function of various plant metabolites, which is synthesized by GGPPS (GGPP synthases) in plants. GGPPS characterization has not been performed in any plant species except Arabidopsis thaliana. Here, we performed a complete computational and bioinformatics analysis of GGPPS and detected their transcription expression pattern in Gossypium hirsutum for the first time so that to explore their evolutionary relationship and potential functions. Finally, we unravelled evolutionary relationship, conserved sequence logos, gene duplication and potential involvement in plant development and abiotic stresses tolerance of GGPPS genes in G. hirsutum and other plant species. RESULTS: A total of 159 GGPPS genes from 18 plant species were identified and evolutionary analysis divided these GGPPS genes into five groups to indicate their divergence from a common ancestor. Further, GGPPS family genes were conserved during evolution and underwent segmental duplication. The identified 25 GhGGPPS genes showed diverse expression pattern particularly in ovule and fiber development indicating their vital and divers roles in the fiber development. Additionally, GhGGPPS genes exhibited wide range of responses when subjected to abiotic (heat, cold, NaCl and PEG) stresses and hormonal (BL, GA, IAA, SA and MeJA) treatments, indicating their potential roles in various biotic and abiotic stresses tolerance. CONCLUSIONS: The GGPPS genes are evolutionary conserved and might be involve in different developmental stages and stress response. Some potential key genes (e.g. GhGGPP4, GhGGPP9, and GhGGPP15) were suggested for further study and provided valuable source for cotton breeding to improve fiber quality and resistant to various stresses.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Farnesiltranstransferase , Genoma de Planta , Gossypium/genética , Família Multigênica , Filogenia , Melhoramento Vegetal , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Estresse Fisiológico/genética
3.
Genes (Basel) ; 11(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935825

RESUMO

Pectin is a major polysaccharide component that promotes plant growth and fiber elongation in cotton. In previous studies, the galacturonosyltransferase-like (GATL) gene family has been shown to be involved in pectin synthesis. However, few studies have been performed on cotton GATL genes. Here, a total of 33, 17, and 16 GATL genes were respectively identified in Gossypium hirsutum, Gossypium raimondii, and Gossypium arboreum. In multiple plant species, phylogenetic analysis divided GATL genes into five groups named GATL-a to GATL-e, and the number of groups was found to gradually change over evolution. Whole genome duplication (WGD) and segmental duplication played a significant role in the expansion of the GATL gene family in G. hirsutum. Selection pressure analyses revealed that GATL-a and GATL-b groups underwent a great positive selection pressure during evolution. Moreover, the expression patterns revealed that most of highly expressed GhGATL genes belong to GATL-a and GATL-b groups, which have more segmental duplications and larger positive selection value, suggesting that these genes may play an important role in the evolution of cotton plants. We overexpressed GhGATL2, GhGATL9, GhGATL12, and GhGATL15 in Arabidopsis and silenced the GhGATL15 gene in cotton through a virus induced gene silencing assay (VIGS). The transgenic and VIGS lines showed significant differences in stem diameter, epidermal hair length, stamen length, seed size, and fiber length than the control plant. In addition, the pectin content test proved that the pectin was significantly increased in the transgenic lines and reduced in VIGS plants, demonstrating that GhGATL genes have similar functions and act on the pectin synthesis to regulate plant growth and fiber elongation. In summary, we performed a comprehensive analysis of GhGATL genes in G. hirsutum including evolution, structure and function, in order to better understand GhGATL genes in cotton for further studies.


Assuntos
Galactosiltransferases/genética , Gossypium/genética , Pectinas/genética , Galactosiltransferases/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Família Multigênica/genética , Pectinas/biossíntese , Filogenia , Proteínas de Plantas/genética
4.
PLoS One ; 14(6): e0218938, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31242257

RESUMO

RB-GRP (RNA-binding Glycine-rich protein gene) family belongs to the fourth subfamily of the GRP (Glycine-rich protein gene) superfamily, which plays a great role in plant growth and development, as well as in abiotic stresses response, while it has not been identified in cotton. Here, we identified 37 and 32 RB-GRPs from two cotton species (Gossypium arboreum and Gossypium raimondii, respectively), which were divided into four distinct subfamilies based on the presence of additional motifs and the arrangement of the glycine repeats. The distribution of RB-GRPs was nonrandom and uneven among the chromosomes both in two cotton species. The expansion of RB-GRP gene family between two cultivars was mainly attributed to segmental and tandem duplication events indicated by synteny analysis, and the tandem duplicated genes were mapped into homologous collinear blocks, indicated that they shared a common ancestral gene in both species. Furthermore, most RB-GRPs in two cotton species undergone stronger negative selective pressure by evolutionary analysis of RB-GRP orthologous genes. Meanwhile, RB-GRPs participated in different abiotic stresses (Abscisic acid, salt and Polyethylene glycol) responses and tissues at different developmental stages between two cotton species were showed by gene expression analysis. This research would provide insight into the evolution and function of the RB-GRPs in Gossypium species.


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica/métodos , Gossypium/crescimento & desenvolvimento , Proteínas de Ligação a RNA/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Gossypium/classificação , Gossypium/genética , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Seleção Genética , Análise de Sequência de RNA , Estresse Fisiológico , Sintenia
5.
J Exp Bot ; 70(18): 4721-4736, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31106831

RESUMO

Plants undergo a phase transition from vegetative to reproductive development that triggers floral induction. Genes containing an AAI (α-amylase inhibitor) domain form a large gene family, but there have been no comprehensive analyses of this gene family in any plant species. Here, we identified 336 AAI genes from nine plant species including122 AAI genes in cotton (Gossypium hirsutum). The AAI gene family has evolutionarily conserved amino acid residues throughout the plant kingdom. Phylogenetic analysis classified AAI genes into five major clades with significant polyploidization and showing effects of genome duplication. Our study identified 42 paralogous and 216 orthologous gene pairs resulting from segmental and whole-genome duplication, respectively, demonstrating significant contributions of gene duplication to expansion of the cotton AAI gene family. Further, GhAAI66 was preferentially expressed in flower tissue and as responses to phytohormone treatments. Ectopic expression of GhAAI66 in Arabidopsis and silencing in cotton revealed that GhAAI66 triggers a phase transition to induce early flowering. Further, GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of RNA sequencing data and qRT-PCR (quantitative reverse transcription-PCR) analysis indicated that GhAAI66 integrates multiple flower signaling pathways including gibberellin, jasmonic acid, and floral integrators to trigger an early flowering cascade in Arabidopsis. Therefore, characterization of the AAI family provides invaluable insights for improving cotton breeding.


Assuntos
Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Proteínas de Plantas/genética , Briófitas/genética , Briófitas/metabolismo , Gleiquênias/genética , Gleiquênias/metabolismo , Flores/genética , Gossypium/metabolismo , Magnoliopsida/genética , Magnoliopsida/metabolismo , Proteínas de Plantas/metabolismo
6.
Int J Mol Sci ; 20(7)2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970629

RESUMO

Proline-rich extensin-like receptor kinases (PERKs) are an important class of receptor kinases in plants. Receptor kinases comprise large gene families in many plant species, including the 15 PERK genes in Arabidopsis. At present, there is no comprehensive published study of PERK genes in G. hirsutum. Our study identified 33 PERK genes in G. hirsutum. Phylogenetic analysis of conserved PERK protein sequences from 15 plant species grouped them into four well defined clades. The GhPERK gene family is an evolutionarily advanced gene family that lost its introns over time. Several cis-elements were identified in the promoter regions of the GhPERK genes that are important in regulating growth, development, light responses and the response to several stresses. In addition, we found evidence for gene loss or addition through segmental or whole genome duplication in cotton. Gene duplication and synteny analysis identified 149 orthologous/paralogous gene pairs. Ka/Ks values show that most GhPERK genes experienced strong purifying selection during the rapid evolution of the gene family. GhPERK genes showed high expression levels in leaves and during ovule development. Furthermore, the expression of GhPERK genes can be regulated by abiotic stresses and phytohormone treatments. Additionally, PERK genes could be involved in several molecular, biological and physiological processes that might be the result of functional divergence.


Assuntos
Duplicação Gênica , Gossypium/genética , Folhas de Planta/genética , eIF-2 Quinase/genética , Sequência de Aminoácidos , Simulação por Computador , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/genética
7.
Gene ; 709: 36-47, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30898717

RESUMO

Cotton fiber initiation is the first step in fiber development, and it determines the yield. Here, genome-wide transcriptome profiling of Gossypium arboreum was performed to determine the molecular basis of cotton fiber initiation. A comparison of the transcriptomes of fiber-bearing ovules at -0.5, 0, 0.5, 1, 1.5, 2, 2.5 and 3 d post-anthesis detected 12,049 differentially expressed genes that mainly participated in ribosome, carbon metabolism and amino acid biosynthesis pathways. Genes encoding alcohol dehydrogenase 1 and hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase, involving in fatty acid degradation and flavonoid biosynthesis, were enriched. Furthermore, 1049 differentially expressed transcription factors were identified. Among these, 17 were trihelix family transcription factors, which play important roles in plant development and responses to biotic and abiotic stresses. In total, 52 full-length trihelix genes, named as GaGTs, were identified in G. arboreum and located in 12 of the 13 cotton chromosomes. Transcriptomic data and a quantitative real-time PCR analysis indicated that several GaGTs were significantly induced during fiber initiation in G. arboreum. Thus, the genome-wide comprehensive analysis of gene expression in G. arboreum fiber initiation will serve as a useful resource for unraveling the functions of specific genes. The phylogenetic relationships and expression analyses of the G. arboreum trihelix genes established a solid foundation for future comprehensive functional analyses of the GaGTs.


Assuntos
Fibra de Algodão , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Sequências Hélice-Alça-Hélice , Fatores de Transcrição/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Sequências Hélice-Alça-Hélice/genética , Família Multigênica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Fatores de Transcrição/química
8.
Int J Mol Sci ; 20(2)2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30654456

RESUMO

Cyclophilins (CYPs) are a member of the immunophilin superfamily (in addition to FKBPs and parvulins) and play a significant role in peptidyl-prolyl cis-trans isomerase (PPIase) activity. Previous studies have shown that CYPs have important functions in plants, but no genome-wide analysis of the cotton CYP gene family has been reported, and the specific biological function of this gene is still elusive. Based on the release of the cotton genome sequence, we identified 75, 78, 40 and 38 CYP gene sequences from G. barbadense, G. hirsutum, G. arboreum, and G. raimondii, respectively; 221 CYP genes were unequally located on chromosomes. Phylogenetic analysis showed that 231 CYP genes clustered into three major groups and eight subgroups. Collinearity analysis showed that segmental duplications played a significant role in the expansion of CYP members in cotton. There were light-responsiveness, abiotic-stress and hormone-response elements upstream of most of the CYPs. In addition, the motif composition analysis revealed that 49 cyclophilin proteins had extra domains, including TPR (tetratricopeptide repeat), coiled coil, U-box, RRM (RNA recognition motif), WD40 (RNA recognition motif) and zinc finger domains, along with the cyclophilin-like domain (CLD). The expression patterns based on qRT-PCR showed that six CYP expression levels showed greater differences between Xinhai21 (long fibres, G. barbadense) and Ashmon (short fibres, G. barbadense) at 10 and 20 days postanthesis (DPA). These results signified that CYP genes are involved in the elongation stage of cotton fibre development. This study provides a valuable resource for further investigations of CYP gene functions and molecular mechanisms in cotton.


Assuntos
Fibra de Algodão , Ciclofilinas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Família Multigênica , Proteínas de Plantas/genética , Cromossomos de Plantas/genética , Genes de Plantas , Filogenia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Especificidade da Espécie
9.
Sci China Life Sci ; 62(1): 63-75, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29987502

RESUMO

Drought stress results in significant losses in agricultural production, and especially that of cotton. The molecular mechanisms that coordinate drought tolerance remain elusive in cotton. Here, we isolated a drought-response gene GhKLCR1, which is a close homolog of AtKLCR1, which encodes a kinesin light chain-related protein enriched with a tetratrico peptide-repeat region. A subcellular localization assay showed that GhKLCR1 is associated with the cell membrane. A tissue-specific expression profile analysis demonstrated that GhKLCR1 is a cotton root-specific gene. Further abiotic and hormonal stress treatments showed that GhKLCR1 was upregulated during abiotic stresses, especially after polyethylene glycol treatments. In addition, the glucuronidase (GUS) staining activity increased as the increment of mannitol concentration in transgenic Arabidopsis plants harboring the fusion construct PGhKLCR1::GUS. The root lengths of 35S::GhKLCR1 lines were significantly reduced compared with that of wild type. Additionally, seed germination was strongly inhibited in 35S::GhKLCR1 lines after 300-mmol L-1 mannitol treatments as compared with Columbia-0, indicating the sensitivity of GhKLCR1 to drought. These findings provide a better understanding of the structural, physiological and functional mechanisms of kinesin light chain-related proteins.


Assuntos
Arabidopsis/genética , Secas , Gossypium/genética , Cinesinas/genética , Proteínas de Plantas/genética , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/genética , Gossypium/metabolismo , Cinesinas/metabolismo , Manitol/farmacologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polietilenoglicóis/farmacologia , Sementes/genética , Sementes/metabolismo , Estresse Fisiológico
10.
BMC Plant Biol ; 18(1): 330, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514299

RESUMO

BACKGROUND: The glycogen synthase kinase 3/shaggy kinase (GSK3) is a serine/threonine kinase with important roles in animals. Although GSK3 genes have been studied for more than 30 years, plant GSK genes have been studied only since the last decade. Previous research has confirmed that plant GSK genes are involved in diverse processes, including floral development, brassinosteroid signaling, and responses to abiotic stresses. RESULT: In this study, 20, 15 (including 5 different transcripts) and 10 GSK genes were identified in G. hirsutum, G. raimondii and G. arboreum, respectively. A total of 65 genes from Arabidopsis, rice, and cotton were classified into 4 clades. High similarities were found in GSK3 protein sequences, conserved motifs, and gene structures, as well as good concordance in gene pairwise comparisons (G. hirsutum vs. G. arboreum, G. hirsutum vs. G. raimondii, and G. arboreum vs. G. raimondii) were observed. Whole genome duplication (WGD) within At and Dt sub-genomes has been central to the expansion of the GSK gene family. Furthermore, GhSK genes showed diverse expression patterns in various tissues. Additionally, the expression profiles of GhSKs under different stress treatments demonstrated that many are stress-responsive genes. However, none were induced by brassinolide treatment. Finally, nine co-expression sub-networks were observed for GhSKs and the functional annotations of these genes suggested that some GhSKs might be involved in cotton fiber development. CONCLUSION: In this present work, we identified 45 GSK genes from three cotton species, which were divided into four clades. The gene features, muti-alignment, conversed motifs, and syntenic blocks indicate that they have been highly conserved during evolution. Whole genome duplication was determined to be the dominant factor for GSK gene family expansion. The analysis of co-expressed sub-networks and tissue-specific expression profiles suggested functions of GhSKs during fiber development. Moreover, their different responses to various abiotic stresses indicated great functional diversity amongst the GhSKs. Briefly, data presented herein may serve as the basis for future functional studies of GhSKs.


Assuntos
Fibra de Algodão , Quinase 3 da Glicogênio Sintase/genética , Gossypium/genética , Proteínas de Plantas/genética , Animais , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/fisiologia , Gossypium/metabolismo , Gossypium/fisiologia , Filogenia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , RNA de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
11.
BMC Plant Biol ; 18(1): 350, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30541440

RESUMO

BACKGROUND: Auxin-induced genes regulate many aspects of plant growth and development. The Gretchen Hagen 3 (GH3) gene family, one of three major early auxin-responsive families, is ubiquitous in the plant kingdom and its members function as regulators in modulating hormonal homeostasis, and stress adaptations. Specific Auxin-amido synthetase activity of GH3 subfamily II genes is reported to reversibly inactivate or fully degrade excess auxin through the formation of amino acid conjugates. Despite these crucial roles, to date, genome-wide analysis of the GH3 gene family has not been reported in cotton. RESULTS: We identified a total of 10 GH3 subfamily II genes in G. arboreum, 10 in G. raimondii, and 20 in G. hirsutum, respectively. Bioinformatic analysis showed that cotton GH3 genes are conserved with the established GH3s in plants. Expression pattern analysis based on RNA-seq data and qRT-PCR revealed that 20 GhGH3 genes were differentially expressed in a temporally and spatially specific manner, indicating their diverse functions in growth and development. We further summarized the organization of promoter regulatory elements and monitored their responsiveness to treatment with IAA (indole-3-acetic acid), SA (salicylic acid), GA (gibberellic acid) and BL (brassinolide) by qRT-PCR in roots and stems. These hormones seemed to regulate the expression of GH3 genes in both a positive and a negative manner while certain members likely have higher sensitivity to all four hormones. Further, we tested the expression of GhGH3 genes in the BR-deficient mutant pag1 and the corresponding wild-type (WT) of CCRI24. The altered expression reflected the true responsiveness to BL and further suggested possible reasons, at least in part, responsible for the dramatic dwarf and shriveled phenotypes of pag1. CONCLUSION: We comprehensively identified GH3 subfamily II genes in cotton. GhGH3s are differentially expressed in various tissues/organs/stages. Their response to IAA, SA, BL and GA and altered expression in pag1 suggest that some GhGH3 genes might be simultaneously involved in multiple hormone signaling pathways. Taken together, our results suggest that members of the GhGH3 gene family could be possible candidate genes for mechanistic study and applications in cotton fiber development in addition to the reconstruction of plant architecture.


Assuntos
Fibra de Algodão , Genes de Plantas/genética , Gossypium/genética , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Gossypium/anatomia & histologia , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia
12.
Front Plant Sci ; 8: 384, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28382045

RESUMO

Cotton is one of the major world oil crops. Cottonseed oil meets the increasing demand of fried food, ruminant feed, and renewable bio-fuels. MADS intervening keratin-like and C-terminal (MIKC)-type MADS-box genes encode transcription factors that have crucial roles in various plant developmental processes. Nevertheless, this gene family has not been characterized, nor its functions investigated, in cotton. Here, we performed a comprehensive analysis of MIKC-type MADS genes in the tetraploid Gossypium hirsutum L., which is the most widely cultivated cotton species. In total, 110 GhMIKC genes were identified and phylogenetically classified into 13 subfamilies. The Flowering locus C (FLC) subfamily was absent in the Gossypium hirsutum L. genome but is found in Arabidopsis and Vitis vinifera L. Among the genes, 108 were distributed across the 13 A and 12 of the D genome's chromosomes, while two were located in scaffolds. GhMIKCs within subfamilies displayed similar exon/intron characteristics and conserved motif compositions. According to RNA-sequencing, most MIKC genes exhibited high flowering-associated expression profiles. A quantitative real-time PCR analysis revealed that some crucial MIKC genes determined the identities of the five flower organs. Furthermore, the overexpression of GhAGL17.9 in Arabidopsis caused an early flowering phenotype. Meanwhile, the expression levels of the flowering-related genes CONSTANS (CO), LEAFY (LFY) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) were significantly increased in these lines. These results provide useful information for future studies of GhMIKCs' regulation of cotton flowering.

13.
Plant Physiol Biochem ; 109: 128-136, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27669397

RESUMO

Calcium signaling regulates many developmental processes in plants. Calmodulin (CaM) is one of the most conserved calcium sensors and has a flexible conformation in eukaryotes. The molecular functions of CaM are unknown in cotton, which is a major source of natural fiber. In this study, a Gossypium hirsutum L.CaM7-like gene was isolated from upland cotton. Bioinformatics analysis indicated that the GhCaM7-like gene was highly conserved as compared with Arabidopsis AtCaM7. The GhCaM7-like gene showed a high expression level in elongating fibers. Expression of ß-glucuronidase was observed in trichomes on the stem, leaf and root in transgenic Arabidopsis plants of a PROGhCaM7-like:GUS fusion. Silencing of the GhCaM7-like gene resulted in decreased fiber length, but also caused reduction in stem height, leaf dimensions, seed length and 100-seed weight, in comparison with those of the control. Reduced expression of the GhCaM7-like gene caused decreased Ca2+ influx in cells of the leaf hypodermis and stem apex, and down-regulation of GhIQD1 (IQ67-domain containing protein), GhAnn2 (Annexins) and GhEXP2 (Expansin). These results indicate that the GhCaM7-like gene plays a vital role in calcium signaling pathways, and may regulate cotton fiber elongation and biomass production by affecting Ca2+ signatures and downstream signaling pathways of CaM.


Assuntos
Biomassa , Cálcio/metabolismo , Calmodulina/genética , Fibra de Algodão , Gossypium/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sinalização do Cálcio/genética , Calmodulina/classificação , Calmodulina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Homologia de Sequência de Aminoácidos
14.
BMC Genomics ; 16: 55, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25652321

RESUMO

BACKGROUND: Tetraploid cotton contains two sets of homologous chromosomes, the At- and Dt-subgenomes. Consequently, many markers in cotton were mapped to multiple positions during linkage genetic map construction, posing a challenge to anchoring linkage groups and mapping economically-important genes to particular chromosomes. Chromosome-specific markers could solve this problem. Recently, the genomes of two diploid species were sequenced whose progenitors were putative contributors of the At- and Dt-subgenomes to tetraploid cotton. These sequences provide a powerful tool for developing chromosome-specific markers given the high level of synteny among tetraploid and diploid cotton genomes. In this study, simple sequence repeats (SSRs) on each chromosome in the two diploid genomes were characterized. Chromosome-specific SSRs were developed by comparative analysis and proved to distinguish chromosomes. RESULTS: A total of 200,744 and 142,409 SSRs were detected on the 13 chromosomes of Gossypium arboreum L. and Gossypium raimondii Ulbrich, respectively. Chromosome-specific SSRs were obtained by comparing SSR flanking sequences from each chromosome with those from the other 25 chromosomes. The average was 7,996 per chromosome. To confirm their chromosome specificity, these SSRs were used to distinguish two homologous chromosomes in tetraploid cotton through linkage group construction. The chromosome-specific SSRs and previously-reported chromosome markers were grouped together, and no marker mapped to another homologous chromosome, proving that the chromosome-specific SSRs were unique and could distinguish homologous chromosomes in tetraploid cotton. Because longer dinucleotide AT-rich repeats were the most polymorphic in previous reports, the SSRs on each chromosome were sorted by motif type and repeat length for convenient selection. The primer sequences of all chromosome-specific SSRs were also made publicly available. CONCLUSION: Chromosome-specific SSRs are efficient tools for chromosome identification by anchoring linkage groups to particular chromosomes during genetic mapping and are especially useful in mapping of qualitative-trait genes or quantitative trait loci with just a few markers. The SSRs reported here will facilitate a number of genetic and genomic studies in cotton, including construction of high-density genetic maps, positional gene cloning, fingerprinting, and genetic diversity and comparative evolutionary analyses among Gossypium species.


Assuntos
Cromossomos/genética , Genoma de Planta , Gossypium/genética , Tetraploidia , Sequência de Bases , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Ligação Genética , Marcadores Genéticos , Variação Genética , Repetições de Microssatélites/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA