Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120613, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547824

RESUMO

The disintegration and instability of aerobic granular sludge (AGS) systems during long-term operation pose significant challenges to its practical implementation, and rapid recovery strategies for disintegrated AGS are gaining more attention. In this study, the recovery and re-stabilization of disintegrated AGS was investigated by adding chitosan to a sequencing batch reactor and simultaneously adjusting the pH to slightly acidic condition. Within 7 days, chitosan addition under slight acidity led to the re-aggregation of disintegrated granules, increasing the average particle size from 166.4 µm to 485.9 µm. Notably, sludge volume indexes at 5 min (SVI5) and 30 min (SVI30) decreased remarkably from 404.6 mL/g and 215.1 mL/g (SVI30/SVI5 = 0.53) to 49.1 mL/g and 47.6 mL/g (SVI30/SVI5 = 0.97), respectively. Subsequent operation for 43 days successfully re-stabilized previous collapsed AGS system, resulting in an average particle size of 750.2 µm. These mature and re-stabilized granules exhibited characteristics of large particle size, excellent settleability, compact structure, and high biomass retention. Furthermore, chitosan facilitated the recovery of COD and nitrogen removal performances within 17-23 days of operation. It effectively facilitated the rapid aggregation of disintegrated granules by charge neutralization and bridging effects under a slightly acidic environment. Moreover, the precipitated chitosan acted as carriers, promoting the adhesion of microorganisms once pH control was discontinued. The results of batch tests and microbial community analysis confirmed that chitosan addition increased sludge retention time, enriching slow-growing microorganisms and enhancing the stability and pollutant removal efficiency of the AGS system.


Assuntos
Quitosana , Esgotos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Aerobiose , Nitrogênio/química
2.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38337177

RESUMO

AIMS: To address the increasingly serious challenge of the transmission of foodbrone pathogens in the food chain. METHODS AND RESULTS: In this study, we employed rational design strategies, including truncation, amino acid substitution, and heterozygosity, to generate seven engineered peptides with α-helical structure, cationic property, and amphipathic characteristics based on the original Abhisin template. Among them, as the hybird antimicrobial peptide (AMP), AM exhibits exceptional stability, minimal toxicity, as well as broad-spectrum and potent antimicrobial activity against foodborne pathogens. Besides, it was observed that the electrostatic incorporation demonstrates by AM results in its primary targeting and disruption of the cell wall and membrane of Escherichia coli O157: H7 (EHEC) and methicillin-resistant Staphylococcus aureus (MRSA), resulting in membrane perforation and enhanced permeability. Additionally, AM effectively counteracts the deleterious effects of lipopolysaccharide, eradicating biofilms and ultimately inducing the demise of both food spoilage and pathogenic microorganisms. CONCLUSIONS: The findings highlight the significant potential of AM as a highly promising candidate for a novel food preservative and its great importance in the design and optimization of AMP-related agents.


Assuntos
Anti-Infecciosos , Escherichia coli O157 , Staphylococcus aureus Resistente à Meticilina , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Antibacterianos/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia
3.
ACS Biomater Sci Eng ; 9(12): 6698-6714, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37988627

RESUMO

The widespread and escalating emergence of multidrug resistance is now recognized as one of the most severe global threats to human health. To address the urgent issue of drug-resistant bacteria and the limitation of effective clinical treatments, antimicrobial peptides (AMPs) have been developed as promising substituents of conventional antibiotics. In this study, rational design strategies were employed to acquire seven cationic and α-helical engineered peptides based on the original template of Abaecin. After investigation, we found that AC7 (LLRRWKKLFKKIIRWPRPLPNPGH) demonstrated potent and broad-spectrum antimicrobial activity. Additionally, it demonstrated low cytotoxicity and hemolysis while maintaining good stability. Notably, AC7 displays the antibacterial mechanism with superior abilities in cell membrane disruption and potential DNA binding in vitro, as well as effectively disrupting biofilms. Moreover, the murine skin wound model infected with drug-resistant Pseudomonas aeruginosa was employed to evaluate the anti-infective efficacy and therapeutic potential of AC7. It was observed that AC7 displays a remarkable capacity to inhibit wound colonization, reduce levels of inflammatory cytokines (TNF-α) and inflammatory cells (white blood cells (WBC), monocytes (MONO), lymphocytes (LYMPH), neutrophils (GRAN)), promote the levels of IL-10 and VEGF, and enhance wound healing. Overall, these findings demonstrate the potential of AC7 as a viable alternative to traditional antibiotics.


Assuntos
Anti-Infecciosos , Animais , Camundongos , Humanos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Bactérias , Cicatrização
4.
Appl Microbiol Biotechnol ; 107(21): 6621-6640, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37672069

RESUMO

Infections caused by pathogens can be a significant challenge in wound healing, particularly when antimicrobial resistance is a factor. This can pose a serious threat to human health and well-being. In this scenario, it is imperative to explore novel antimicrobial agents to fight against multi-drug resistant (MDR) pathogenic bacteria. This study employed rational design strategies, including truncation, amino acid replacement, and heterozygosity, to obtain seven α-helical, cationic, and engineered peptides based on the original template of Abhisin. Among the analogs of Abhisin, AB7 displayed broad-spectrum and potent antimicrobial activity, superior targeting of membranes and DNA, and the ability to disrupt biofilms and anti-endotoxins in vitro. Additionally, we evaluated the anti-infection ability of AB7 using a murine skin wound model infected with methicillin-resistant Staphylococcus aureus (MRSA) and found that AB7 displayed negligible toxicity both in vitro and in vivo. Furthermore, AB7 exhibited desirable therapeutic efficacy by reducing bacterial burden and pro-inflammatory mediators, modulating cytokines, promoting wound healing, and enhancing angiogenesis. These results highlight the potential of AB7 as a promising candidate for a new antibiotic. KEY POINTS: • A α-helical, cationic, and engineered peptide AB7 was obtained based on Abhisin. • AB7 exhibited potent antimicrobial activity and multiple bactericidal actions. • AB7 effectively treated infected skin wounds in mice.

5.
Sci Total Environ ; 762: 144171, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33360471

RESUMO

This study presents a novel strategy to accelerate the start-up of aerobic granular sludge (AGS) system and ensure the nutrient removal during cultivation. This new method consists of preparing the chitosan-based sludge aggregates outside the reactor and then seeding the reactor with such sludge aggregates. To prepare chitosan-based sludge aggregates, chitosan was dissolved in acetic acid solution acting as a cationic flocculant to bind negatively charged sludge together, and then the dissolved chitosan was in situ precipitated by readjusting pH to form stable sludge aggregates. The chitosan-induced charge neutralization and water-insolubility of chitosan were the two main reasons for the super-rapid formation of chitosan-based sludge aggregates. The as-prepared chitosan-based sludge aggregates had a much lower sludge volume index at 30 min (SVI30) (90.1 mL/g) than the original sludge (SVI30 = 328.0 mL/g). They also had some AGS-like characteristics such as large particle size (1300 µm) and fast settling velocity (23.8 m/h). Consequently, short settling time can be achieved and excessive biomass wash-out can be avoided in the rapid start-up of AGS system with chitosan-based sludge aggregates as inoculant, which was beneficial to accelerating sludge granulation while maintaining nutrient removal. Additionally, the abundances of filamentous bacteria and Candidatus Accumulibacter and the content of extracellular polymeric substances increased during cultivation, which could also contribute to the AGS formation. By seeding chitosan-based sludge aggregates in the anaerobic/oxic sequencing batch reactor, complete granulation was rapidly achieved in 10 days, and good removals of nitrogen and phosphorus was obtained after 14-18 days of cultivation.


Assuntos
Quitosana , Esgotos , Aerobiose , Reatores Biológicos , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA