Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 95(46): 17135-17142, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37941297

RESUMO

Nanobodies have gained widespread application in immunoassays. However, their small size presents a significant challenge in achieving effective immobilization and optimal sensitivity. Here, we present a novel "one-for-two"-oriented immobilization platform based on an organism-bispecific nanobody (O-BsNb) scaffold, enabling highly sensitive detection of two bacterial pathogens. Through genetic engineering, a bispecific nanobody (BsNb) was engineered, targeting Salmonella spp. and Vibrio parahaemolyticus. The O-BsNb scaffold allowed one nanobody to bind specifically to inactivated bacteria, forming an organism-oriented immobilization platform, while the other served as the capture antibody. Consequently, the O-BsNb bioscaffold-based ELISA (O-ELISA) for individual detection of S. enteritidis and V. parahaemolyticus was established. When compared to the sandwich ELISA utilizing passive immobilization of monovalent nanobodies, the O-ELISA exhibited a remarkable 13.4- and 13.7-fold improvement in LOD for S. enteritidis and V. parahaemolyticus, respectively, highlighting the enhanced immobilization efficacy of the O-ELISA. Furthermore, the feasibility and reproducibility of the assay in practical samples were meticulously evaluated, revealing exemplary performance in terms of recovery precision and assay stability. These findings demonstrate the significant potential of the O-ELISA platform for the sensitive detection of macromolecules, opening new avenues for efficient pathogen identification in foodborne safety and clinical diagnostics.


Assuntos
Anticorpos de Domínio Único , Reprodutibilidade dos Testes , Ensaio de Imunoadsorção Enzimática , Imunoensaio , Anticorpos , Salmonella enteritidis
2.
J Agric Food Chem ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917663

RESUMO

Nanobodies (Nbs) are widely used in immunoassays with the advantages of small size and high stability. Here, the nanobody employed as the surrogate of aflatoxin antigen and the recognition mechanism of antiaflatoxin mAb with nanobody was studied by molecular modeling, which verified the feasibility of Nbs as antigen substitutes. On this basis, a nanobody-alkaline phosphatase fusion protein (Nb-AP) was constructed, and a highly sensitive "on-off-on" fluorescent immunosensor (OFO-FL immunosensor) based on the calcein/Ce3+ system was developed for aflatoxin quantification. Briefly, calcein serves as a signal transducer, and its fluorescence can be quenched after it is bound with Ce3+. In the presence of Nb-AP, AP catalyzed p-nitrophenyl phosphate to generate orthophosphate, which competes in binding with Ce3+, leading to fluorescence recovery. The method has a linearity range of 0.005-100 ng/mL, and the IC50 of the OFO-FL immunosensor was 0.063 ng/mL, which was 18-fold lower than that of conventional enzyme-linked immunosorbent assay. The assay was successfully applied in food samples with a recovery of 88-121%.

3.
Anal Chem ; 95(36): 13698-13707, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37635301

RESUMO

The exploitation of stable, high-affinity, and low-cost nanoprobes is essential to develop immunoassays for real-time monitoring of foodborne pathogens, so as to safeguard human health. The possible interaction of the Fc fragment of antibodies with spA protein on Staphylococcus aureus will result in unexpected interference. To address this consideration, we described herein for the first time the development of nanobodies that by definition are devoid of the Fc fraction. These nanobodies directed against Cronobacter sakazakii (C. sakazakii) were retrieved from a dedicated immune phage-displayed nanobody library. The binders showed superiority of low cost, strong stability, high binding affinity, and adequate load capacity. Thereafter, a phage-mediated sandwich enzyme-linked immunosorbent assay (ELISA) was constructed by using Cs-Nb2 as an antigen-capturing antibody and phage-displayed Cs-Nb1 as a detection probe. To further enhance the sensitivity, a chemiluminescent enzyme immunoassay (CISA) was established by replacing the substrate from 3,3',5,5'-tetramethylbenzidine (TMB) to luminol, providing a limit of detection of 1.04 × 104 CFU/mL, with a recovery of 98.15-114.63% for the detection of C. sakazakii in dairy products. The proposed nanobody-based phage-mediated sandwich CLISA shows various advantages, including high sensitivity, cost effectiveness, enhanced loading capacity of the enzyme, and high resistance to the matrix effect, providing a strategy for the design of immunoassays toward foodborne pathogens.


Assuntos
Bacteriófagos , Cronobacter sakazakii , Anticorpos de Domínio Único , Humanos , Testes Imunológicos , Laticínios
4.
J Hazard Mater ; 443(Pt A): 130157, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36265374

RESUMO

Rapid and sensitive detection of bacterial pathogens present in food and environmental samples is of crucial importance to ensure human health and safety. Here, we present a one-step label-free colorimetric strategy based on M13 bacteriophage-displayed nanobody (phage-Nb) derived from camelid heavy-chain antibodies specific to Vibrio parahaemolyticus (V. parahaemolyticus). The thiolation of phage-Nb (Phage-Nb-SH) on pVIII shell proteins induces the aggregation of gold nanoparticles (AuNPs), whereas the specific interaction between nanobody and bacteria prevents the aggregation of AuNPs, resulting in visible color change due to alteration of surface plasmon resonance properties. Based on this phenomenon, a simple and sensitive colorimetric immunosensor for V. parahaemolyticus was developed. The assay can be accomplished within 100 min, and exhibits a visual detection limit of 104 cfu/mL and a quantitative detection limit of 103 cfu/mL, with no cross-reactivity towards other bacterial species. This strategy takes full advantages of both the high specificity of phage-Nbs and the optical properties of AuNPs, enabling simple and rapid detection of bacterial pathogens.


Assuntos
Bacteriófagos , Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Ouro , Imunoensaio , Limite de Detecção
5.
Biol Chem ; 403(3): 253-263, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34653323

RESUMO

Extensive studies have reported that interaction of α-synuclein amyloid species with neurons is a crucial mechanistic characteristic of Parkinson's disease (PD) and small molecules can downregulate the neurotoxic effects induced by protein aggregation. However, the exact mechanism(s) of these neuroprotective effects by small molecules remain widely unknown. In the present study, α-synuclein samples in the amyloidogenic condition were aged for 120 h with or without different concentrations of mitoquinone (MitoQ) as a quinone derivative compound and the amyloid characteristics and the relevant neurotoxicity were evaluated by Thioflavin T (ThT)/Nile red fluorescence, Congo red absorption, circular dichroism (CD), transmission electron microscopy (TEM), cell viability, lactate dehydrogenase (LDH), reactive oxygen species (ROS), reactive nitrogen species (RNS), malondialdehyde (MDA), superoxide dismutase (SOD), and caspase-9/-3 activity assays. Results clearly showed the capacity of MitoQ on the inhibition of the formation of α-synuclein fibrillation products through modulation of the aggregation pathway by an effect on the kinetic parameters. Also, it was shown that α-synuclein samples aged for 120 h with MitoQ trigger less neurotoxic effects against SH-SY5Y cells than α-synuclein amyloid alone. Indeed, co-incubation of α-synuclein with MitoQ reduced the membrane leakage, oxidative and nitro-oxidative stress, modifications of macromolecules, and apoptosis.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Amiloide/metabolismo , Humanos , Compostos Organofosforados , Doença de Parkinson/tratamento farmacológico , Ubiquinona/análogos & derivados , alfa-Sinucleína/metabolismo
6.
Mikrochim Acta ; 185(5): 279, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725773

RESUMO

The authors demonstrate the exploitation of reduced graphene oxide (RGO) as a template for immobilizing zeolitic imidazolate framework-8 (ZIF-8) crystals loaded with the electrochemical probe Methylene Blue (MB). The framework was deposited on the surface of RGO in a one-pot process. Transmission electron microscopy, scanning electron microscopy and X-ray diffraction were employed to characterize the nanocomposite. The electrochemical behavior of rutin at a glassy carbon electrode (GCE) modified with the nanocomposite was investigated by cyclic voltammetry and differential pulse voltammetry. The modified GCE displays high electrocatalytic activity toward rutin oxidation at a relatively low working potential (0.4 V vs. Ag/AgCl). Under the optimal conditions, the sensor has an amperometric response that is linear in the 0.1 to 100 µM rutin concentration range, with a 20 nM detection limit (at an S/N ratio of 3). The method was successfully applied to the determination of rutin in tablets and urine samples. Graphical abstract The zeolitic imidazolate framework ZIF-8 was loaded with Methylene Blue and deposited on the surface of reduced graphene oxide. A glassy carbon electrode was modified with the nanocomposite and then used for the determination of rutin with a 20 nM detection limit and a linear range from 0.1 to 100 µM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA