Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 509
Filtrar
1.
ChemMedChem ; : e202400088, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758134

RESUMO

Tumour-derived sialoglycans, bearing the charged nonulosonic sugar sialic acid at their termini, play a critical role in tumour cell adhesion and invasion, as well as evading cell death and immune surveillance. Sialyltransferases (ST), the enzymes responsible for the biosynthesis of sialylated glycans, are highly upregulated in cancer, with tumour hypersialylation strongly correlated with tumour growth, metastasis and drug resistance. As a result, desialylation of the tumour cell surface using either targeted delivery of a pan-ST inhibitor (or sialidase) or systemic delivery of a non-toxic selective ST inhibitors are being pursued as potential new anti-metastatic strategies against multiple cancers including pancreatic, ovarian, breast, melanoma and lung cancer. Herein, we have employed molecular modelling to give insights into the selectivity observed in a series of selective ST inhibitors that incorporate a uridyl ring in place of the cytidine of the natural donor (CMP-Neu5Ac) and replace the charged phosphodiester linker of classical ST inhibitors with a neutral a-hydroxy-1,2,3-triazole linker. The inhibitory activities of the nascent compounds were determined against recombinant human ST enzymes (ST3GAL1, ST6GAL1, ST8SIA2) showing promising activity and selectivity towards specific ST sub-types. Our ST inhibitors are non-toxic and show improved synthetic accessibility and drug-likeness compared to earlier nucleoside-based ST inhibitors.

2.
Biomicrofluidics ; 18(3): 034102, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726372

RESUMO

Deformation plays a vital role in the survival of natural organisms. One example is that plants deform themselves to face the sun for sufficient sunlight exposure, which allows them to produce nutrients through photosynthesis. Drawing inspiration from nature, researchers have been exploring the development of 3D deformable materials. However, the traditional approach to manufacturing deformable hydrogels relies on complex technology, which limits their potential applications. In this study, we simulate the stress variations observed in the plant tissue to create a 3D structure from a 2D material. Using UV curing technology, we create a single-layer poly(N-isopropylacrylamide) hydrogel sheet with microchannels that exhibit distinct swelling rates when subjected to stimulation. After a two-step curing process, we produce a poly(N-isopropylacrylamide)-polyethylene glycol diacrylatedouble-layer structure that can be manipulated to change its shape by controlling the light and solvent content. Based on the double-layer structure, we fabricate a dual-response driven bionic mimosa robot that can perform a variety of functions. This soft robot can not only reversibly change its shape but also maintain a specific shape without continuous stimulation. Its capacity for reversible deformation, resulting from internal stress, presents promising application prospects in the biomedical and soft robotics domain. This study delivers an insightful framework for the development of programmable soft materials.

3.
BMC Cancer ; 24(1): 630, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783240

RESUMO

BACKGROUND: Tumor morphology, immune function, inflammatory levels, and nutritional status play critical roles in the progression of intrahepatic cholangiocarcinoma (ICC). This multicenter study aimed to investigate the association between markers related to tumor morphology, immune function, inflammatory levels, and nutritional status with the prognosis of ICC patients. Additionally, a novel tumor morphology immune inflammatory nutritional score (TIIN score), integrating these factors was constructed. METHODS: A retrospective analysis was performed on 418 patients who underwent radical surgical resection and had postoperative pathological confirmation of ICC between January 2016 and January 2020 at three medical centers. The cohort was divided into a training set (n = 272) and a validation set (n = 146). The prognostic significance of 16 relevant markers was assessed, and the TIIN score was derived using LASSO regression. Subsequently, the TIIN-nomogram models for OS and RFS were developed based on the TIIN score and the results of multivariate analysis. The predictive performance of the TIIN-nomogram models was evaluated using ROC survival curves, calibration curves, and clinical decision curve analysis (DCA). RESULTS: The TIIN score, derived from albumin-to-alkaline phosphatase ratio (AAPR), albumin-globulin ratio (AGR), monocyte-to-lymphocyte ratio (MLR), and tumor burden score (TBS), effectively categorized patients into high-risk and low-risk groups using the optimal cutoff value. Compared to individual metrics, the TIIN score demonstrated superior predictive value for both OS and RFS. Furthermore, the TIIN score exhibited strong associations with clinical indicators including obstructive jaundice, CEA, CA19-9, Child-pugh grade, perineural invasion, and 8th edition AJCC N stage. Univariate and multivariate analysis confirmed the TIIN score as an independent risk factor for postoperative OS and RFS in ICC patients (p < 0.05). Notably, the TIIN-nomogram models for OS and RFS, constructed based on the multivariate analysis and incorporating the TIIN score, demonstrated excellent predictive ability for postoperative survival in ICC patients. CONCLUSION: The development and validation of the TIIN score, a comprehensive composite index incorporating tumor morphology, immune function, inflammatory level, and nutritional status, significantly contribute to the prognostic assessment of ICC patients. Furthermore, the successful application of the TIIN-nomogram prediction model underscores its potential as a valuable tool in guiding individualized treatment strategies for ICC patients. These findings emphasize the importance of personalized approaches in improving the clinical management and outcomes of ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Estado Nutricional , Humanos , Colangiocarcinoma/cirurgia , Colangiocarcinoma/patologia , Masculino , Feminino , Estudos Retrospectivos , Neoplasias dos Ductos Biliares/cirurgia , Neoplasias dos Ductos Biliares/patologia , Pessoa de Meia-Idade , Prognóstico , Idoso , Nomogramas , Inflamação , Biomarcadores Tumorais , Fosfatase Alcalina/sangue , Carga Tumoral , Avaliação Nutricional , Albumina Sérica/análise , Albumina Sérica/metabolismo , Curva ROC , Monócitos/patologia
4.
Front Genet ; 15: 1387688, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784031

RESUMO

Background: Mechanical ventilation (MV) is often required in critically ill patients. However, prolonged mechanical ventilation can lead to Ventilator-induced diaphragmatic dysfunction (VIDD), resulting in difficulty in extubation after tracheal intubation, prolonged ICU stay, and increased mortality. At present, the incidence of diabetes is high in the world, and the prognosis of diabetic patients with mechanical ventilation is generally poor. Therefore, the role of diabetes in the development of VIDD needs to be discovered. Methods: MV modeling was performed on C57 mice and DB mice, and the control group was set up in each group. After 12 h of mechanical ventilation, the muscle strength of the diaphragm was measured, and the muscle fiber immunofluorescence staining was used to verify the successful establishment of the MV model. RNA sequencing (RNA-seq) method was used to detect mRNA expression levels of the diaphragms of each group, and then differential expressed gene analysis, Heatmap analysis, WGCNA analysis, Venn analysis, GO and KEGG enrichment analysis were performed. qRT-PCR was used to verify the expression of the selected mRNAs. Results: Our results showed that, compared with C57 control mice, the muscle strength and muscle fiber cross-sectional area of mice after mechanical ventilation decreased, and DB mice showed more obvious in this respect. RNA-seq showed that these differential expressed (DE) mRNAs were mainly related to genes such as extracellular matrix, collagen, elastic fiber and Fbxo32. GO and KEGG enrichment analysis showed that the signaling pathways associated with diabetes were mainly as follows: extracellular matrix (ECM), protein digestion and absorption, PI3K-Akt signaling pathway, calcium signaling pathway, MAPK signaling pathway and AGE-RAGE signaling pathway in diabetic complications, etc. ECM has the closest relationship with VIDD in diabetic mice. The key genes determined by WGCNA and Venn analysis were validated by quantitative real-time polymerase chain reaction (qRT-PCR), which exhibited trends similar to those observed by RNA-seq. Conclusion: VIDD can be aggravated in diabetic environment. This study provides new evidence for mRNA changes after mechanical ventilation in diabetic mice, suggesting that ECM and collagen may play an important role in the pathophysiological mechanism and progression of VIDD in diabetic mice, and provides some clues for the research, diagnosis, and treatment of VIDD in diabetic context.

5.
Adv Sci (Weinh) ; : e2306810, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647380

RESUMO

Persistent transcription of HBV covalently closed circular DNA (cccDNA) is critical for chronic HBV infection. Silencing cccDNA transcription through epigenetic mechanisms offers an effective strategy to control HBV. Long non-coding RNAs (lncRNAs), as important epigenetic regulators, have an unclear role in cccDNA transcription regulation. In this study, lncRNA sequencing (lncRNA seq) is conducted on five pairs of HBV-positive and HBV-negative liver tissue. Through analysis, HOXA-AS2 (HOXA cluster antisense RNA 2) is identified as a significantly upregulated lncRNA in HBV-infected livers. Further experiments demonstrate that HBV DNA polymerase (DNA pol) induces HOXA-AS2 after establishing persistent high-level HBV replication. Functional studies reveal that HOXA-AS2 physically binds to cccDNA and significantly inhibits its transcription. Mechanistically, HOXA-AS2 recruits the MTA1-HDAC1/2 deacetylase complex to cccDNA minichromosome by physically interacting with metastasis associated 1 (MTA1) subunit, resulting in reduced acetylation of histone H3 at lysine 9 (H3K9ac) and lysine 27 (H3K27ac) associated with cccDNA and subsequently suppressing cccDNA transcription. Altogether, the study reveals a mechanism to self-limit HBV replication, wherein the upregulation of lncRNA HOXA-AS2, induced by HBV DNA pol, can epigenetically suppress cccDNA transcription.

6.
Small ; : e2311951, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593355

RESUMO

Soft actuators have assumed vital roles in a diverse number of research and application fields, driving innovation and transformative advancements. Using 3D molding of smart materials and combining these materials through structural design strategies, a single soft actuator can achieve multiple functions. However, it is still challenging to realize soft actuators that possess high environmental adaptability while capable of different tasks. Here, the response threshold of a soft actuator is modulated by precisely tuning the ratio of stimulus-responsive groups in hydrogels. By combining a heterogeneous bilayer membrane structure and in situ multimaterial printing, the obtained soft actuator deformed in response to changes in the surrounding medium. The response medium is suitable for both biotic and abiotic environments, and the response rate is fast. By changing the surrounding medium, the precise capture, manipulation, and release of micron-sized particles of different diameters in 3D are realized. In addition, static capture of a single red blood cell is realized using biologically responsive medium changes. Finally, the experimental results are well predicted using finite element analysis. It is believed that with further optimization of the structure size and autonomous navigation platform, the proposed soft microactuator has significant potential to function as an easy-to-manipulate multifunctional robot.

7.
Fish Physiol Biochem ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625478

RESUMO

This study aims to explore whether glycerol monolaurate (GML) can improve reproductive performance of female zebrafish (Danio rerio) and the survival percentage of their offspring. Three kinds of isonitrogenous and isolipid diets, including basal diet (control) and basal diet containing 0.75 g/kg GML (L_GML) and 1.5 g/kg GML (H_GML), were prepared for 4 weeks feeding trial. The results show that GML increased the GSI of female zebrafish. GML also enhanced reproductive performance of female zebrafish. Specifically, GML increased spawning number and hatching rate of female zebrafish. Moreover, GML significantly increased the levels of triglycerides (TG), lauric acid, and estradiol (E2) in the ovary (P < 0.05). Follicle-stimulating hormone (FSH) levels in the ovary and brain also significantly increased in the L_GML group (P < 0.05). Besides, dietary GML regulated the hypothalamus-pituitary-gonad (HPG) axis evidenced by the changed expression levels of HPG axis-related genes in the brain and ovary of the L_GML and H_GML groups compared with the control group. Furthermore, compared with the control group, the expression levels of HPG axis-related genes (kiss2, kiss1r, kiss2r, gnrh3, gnrhr1, gnrhr3, lhß, and esr2b) in the brain of the L_GML group were significantly increased (P < 0.05), and the expression levels of HPG axis-related genes (kiss1, kiss2, kiss2r, gnrh2, gnrh3, gnrhr4, fshß, lhß, esr1, esr2a, and esr2b) in the brain of the H_GML group were significantly increased (P < 0.05). These results suggest that GML may stimulate the expression of gnrh2 and gnrh3 by increasing the expression level of kiss1 and kiss2 genes in the hypothalamus, thus promoting the synthesis of FSH and E2. The expression levels of genes associated with gonadotropin receptors (fshr and lhr) and gonadal steroid hormone synthesis (cyp11a1, cyp17, and cyp19a) in the ovary were also significantly upregulated by dietary GML (P < 0.05). The increasing expression level of cyp19a also may promote the FSH synthesis. Particularly, GML enhanced the richness and diversity and regulated the species composition of intestinal microbiota in female zebrafish. Changes in certain intestinal microorganisms may be related to the expression of certain genes involved in the HPG axis. In addition, L_GML and H_GML both significantly decreased larvae mortality at 96 h post fertilization and their mortality during the first-feeding period (P < 0.05), revealing the enhanced the starvation tolerance of zebrafish larvae. In summary, dietary GML regulated genes related to HPG axis to promote the synthesis of E2 and FSH and altered gut microbiota in female zebrafish, and improved the survival percentage of their offspring.

9.
Front Oncol ; 14: 1301052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549933

RESUMO

Background: Normal hepatic functional reserve is the key to avoiding liver failure after liver surgery. This study investigated the assessment of hepatic functional reserve using liver shear wave velocity (LSWV) combined with biochemical indicators, tumor volume, and portal vein diameter. Methods: In this single-center prospective study, a total of 123 patients with hepatocellular carcinoma (HCC) were divided into a test group (n=92) and a validation group (n=31). All patients were Child-Pugh grade A. The indocyanine green retention rate at 15 min (ICG-R15), liver shear wave velocity (LSWV), portal vein diameter (Dpv), alanine aminotransferase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), γ-glutamyl transpeptidase (γ-GGT), albumin (ALB), prothrombin time (PT), and also liver tumor volume (maximum diameter ≤5 cm) were measured. In the test group, multiple parameters were used to evaluate hepatic functional reserve, and the multiparametric model was established. Receiver operating characteristic (ROC) curve analysis was conducted to assess the diagnostic performance of the multiparametric model. In the validation group, the predictive effectiveness of the multiparametric model was analyzed using consistency tests. Results: It was revealed that LSWV, ALB, and PT were statistically significant in evaluation of the hepatic functional reserve (P<0.05). The multiparametric model was formulated as follows: Y= -18.954 + 9.726*LSWV-0.397*ALB+2.063*PT. The value of the area under the curve (AUC) for the multiparametric model was 0.913 (95% confidence interval (CI): 0.835-0.962, P< 0.01), with a cutoff value of 16.656 (sensitivity, 0.763; specificity, 0.926). The Kappa value of consistency testing was 0.655 (P<0.01). Conclusion: LSWV combined with ALB and PT exhibited a high predictive effectiveness for the assessment of hepatic functional reserve, assisting the clinical diagnosis and management of liver diseases.

10.
Behav Sci (Basel) ; 14(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38540529

RESUMO

Learning from work failures is not only beneficial for individual development but also crucial for improving organizational performance and achieving sustainable development. We hypothesize that leader bottom-line mentality, which is commonly used by leaders to prevent profit and performance losses, may reduce subordinates learning from work failures. Drawing on social information processing theory, this paper examines how and when leader bottom-line mentality negatively affects subordinates learning from work failures. We tested our hypotheses through a three-wave survey of 245 employees from several high-tech companies in China. For data analysis, we used SPSS 26.0 and Mplus 8.0 to test the theoretical model and research hypotheses. The results indicated that leader bottom-line mentality has a negative indirect effect on subordinates learning from work failures through the mediating role of subordinates' psychological availability. In addition, subordinate self-compassion can mitigate this negative mediating mechanism. The present study has several theoretical and practical implications for the current literature.

11.
Diabetol Metab Syndr ; 16(1): 71, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515175

RESUMO

BACKGROUND: Regulatory T cells (Tregs) are involved in the maintenance of immune homeostasis and immune regulation. Clinical trials on the adoptive transfer of Tregs have been ongoing for > 10 years. However, many unresolved issues remain in the production of readymade Treg products and selection of patients. Hence, this study aimed to develop a method to expand off-the-shelf Tregs derived from umbilical cord blood (UCB-Tregs) in vitro without changing their phenotype and inhibitory function. In addition, the study intended to design an approach to precisely select patients who are more likely to benefit from the adoptive Treg transfer therapy. METHODS: UCB-Tregs were isolated and cultured in a medium containing human recombinant IL-2 and rapamycin and then multiply restimulated with human T-activator CD3/CD28 dynabeads. The phenotype and suppressive capacity of Tregs were assessed on days 18 and 42. The relationship between the suppressive function of UCB-Tregs in vitro and clinical indicators was analyzed, and the ability of the in vitro suppressive capacity to predict the in vivo therapeutic effects was evaluated. RESULTS: UCB-Tregs expanded 123-fold and 5,981-fold at 18 and 42 days, respectively. The suppressive function of UCB-Tregs on the proliferation of immune cells at 42 days was not significantly different compared with that of UCB-Tregs obtained at 18 days. The suppression rate of UCB-Tregs to PBMCs was negatively correlated with the course of diabetes. Moreover, the high-suppression group exhibited a better treatment response than the low-suppression group during the 12-month follow-up period. CONCLUSIONS: Multiply restimulated UCB-Tregs expanded at a large scale without any alterations in their classical phenotypic features and inhibitory functions. The suppressive function of Tregs in vitro was negatively correlated with the disease duration. The present study revealed the possibility of predicting the in vivo therapeutic effects via the in vitro inhibition assay. Thus, these findings provided a method to obtain off-the-shelf Treg products and facilitated the selection of patients who are likely to respond to the treatment, thereby moving toward the goal of precision treatment.

12.
J Ethnopharmacol ; 326: 117996, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38431110

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Schisandra chinensis, the dried and ripe fruit of the magnolia family plant Schisandra chinensis (Turcz.) Baill, was commonly used in traditional analgesic prescription. Studies have shown that the extract of Schisandra chinensis (SC) displayed analgesic activity. However, the analgesic active component and the exact mechanisms have yet to be revealed. AIM OF THE STUDY: The present study was to investigate the anti-nociceptive constituent of Schisandra chinensis, assess its analgesic effect, and explore the potential molecular mechanisms. MATERIALS AND METHODS: The effects of a series of well-recognized compounds from SC on glycine receptors were investigated. The analgesic effect of the identified compound was evaluated in three pain models. Mechanistic studies were performed using patch clamp technique on various targets expressed in recombinant cells. These targets included glycine receptors, Nav1.7 sodium channels, Cav2.2 calcium channels et al. Meanwhile, primary cultured spinal dorsal horn (SDH) neurons and dorsal root ganglion (DRG) neurons were also utilized. RESULTS: Schisandrin B (SchB) was a positive allosteric modulator of glycine receptors in spinal dorsal horn neurons. The EC50 of SchB on glycine receptors in spinal dorsal horn neurons was 2.94 ± 0.28 µM. In three pain models, the analgesic effect of SchB was comparable to that of indomethacin at the same dose. Besides, SchB rescued PGE2-induced suppression of α3 GlyR activity and alleviated persistent pain. Notably, SchB could also potently decrease the frequency of action potentials and inhibit sodium and calcium channels in DRG neurons. Consistent with the data from DRG neurons, SchB was also found to significantly block Nav1.7 sodium channels and Cav2.2 channels in recombinant cells. CONCLUSION: Our results demonstrated that, Schisandrin B, the primary lignan component of Schisandra chinensis, may exert its analgesic effect by acting on multiple ion channels, including glycine receptors, Nav1.7 channels, and Cav2.2 channels.


Assuntos
Lignanas , Compostos Policíclicos , Schisandra , Receptores de Glicina , Lignanas/farmacologia , Dor , Canais de Cálcio Tipo N , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Canais de Sódio , Ciclo-Octanos
13.
ACS Nano ; 18(8): 6130-6146, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38349890

RESUMO

Gastric cancer is one of the most prevalent digestive malignancies. The lack of effective in vitro peritoneal models has hindered the exploration of the potential mechanisms behind gastric cancer's peritoneal metastasis. An accumulating body of research indicates that small extracellular vesicles (sEVs) play an indispensable role in peritoneal metastasis of gastric cancer cells. In this study, a biomimetic peritoneum was constructed. The biomimetic model is similar to real peritoneum in internal microstructure, composition, and primary function, and it enables the recurrence of peritoneal metastasis process in vitro. Based on this model, the association between the mechanical properties of sEVs and the invasiveness of gastric cancer was identified. By performing nanomechanical analysis on sEVs, we found that the Young's modulus of sEVs can be utilized to differentiate between malignant clinical samples (ascites) and nonmalignant clinical samples (peritoneal lavage). Furthermore, patients' ascites-derived sEVs were verified to stimulate the mesothelial-to-mesenchymal transition, thereby promoting peritoneal metastasis. In summary, nanomechanical analysis of living sEVs could be utilized for the noninvasive diagnosis of malignant degree and peritoneal metastasis of gastric cancer. This finding is expected to contribute future treatments.


Assuntos
Vesículas Extracelulares , Neoplasias Peritoneais , Neoplasias Gástricas , Humanos , Peritônio/patologia , Neoplasias Gástricas/diagnóstico , Neoplasias Peritoneais/diagnóstico , Ascite/patologia , Biomimética , Vesículas Extracelulares/patologia
14.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339108

RESUMO

We developed the Stem Cell Educator therapy among multiple clinical trials based on the immune modulations of multipotent cord blood-derived stem cells (CB-SCs) on different compartments of immune cells, such as T cells and monocytes/macrophages, in type 1 diabetes and other autoimmune diseases. However, the effects of CB-SCs on the B cells remained unclear. To better understand the molecular mechanisms underlying the immune education of CB-SCs, we explored the modulations of CB-SCs on human B cells. CB-SCs were isolated from human cord blood units and confirmed by flow cytometry with different markers for their purity. B cells were purified by using anti-CD19 immunomagnetic beads from human peripheral blood mononuclear cells (PBMCs). Next, the activated B cells were treated in the presence or absence of coculture with CB-SCs for 7 days before undergoing flow cytometry analysis of phenotypic changes with different markers. Reverse transcription-polymerase chain reaction (RT-PCR) was utilized to evaluate the levels of galectin expressions on CB-SCs with or without treatment of activated B cells in order to find the key galectin that was contributing to the B-cell modulation. Flow cytometry demonstrated that the proliferation of activated B cells was markedly suppressed in the presence of CB-SCs, leading to the downregulation of immunoglobulin production from the activated B cells. Phenotypic analysis revealed that treatment with CB-SCs increased the percentage of IgD+CD27- naïve B cells, but decreased the percentage of IgD-CD27+ switched B cells. The transwell assay showed that the immune suppression of CB-SCs on B cells was dependent on the galectin-9 molecule, as confirmed by the blocking experiment with the anti-galectin-9 monoclonal antibody. Mechanistic studies demonstrated that both calcium levels of cytoplasm and mitochondria were downregulated after the treatment with CB-SCs, causing the decline in mitochondrial membrane potential in the activated B cells. Western blot exhibited that the levels of phosphorylated Akt and Erk1/2 signaling proteins in the activated B cells were also markedly reduced in the presence of CB-SCs. CB-SCs displayed multiple immune modulations on B cells through the galectin-9-mediated mechanism and calcium flux/Akt/Erk1/2 signaling pathways. The data advance our current understanding of the molecular mechanisms underlying the Stem Cell Educator therapy to treat autoimmune diseases in clinics.


Assuntos
Doenças Autoimunes , Leucócitos Mononucleares , Humanos , Sangue Fetal , Cálcio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doenças Autoimunes/metabolismo , Células-Tronco/metabolismo , Galectinas/metabolismo
15.
Int J Neurosci ; : 1-13, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315119

RESUMO

BACKGROUND: As a traditional medical therapy, electroacupuncture (EA) has been demonstrated to have beneficial effects on ischemic stroke-induced cognitive impairment. However, the underlying mechanism is largely unclear. METHODS: Adult rats received occlusion of the middle cerebral artery and reperfusion (MCAO/R) to establish the ischemic stroke model. Morris water maze test was performed following EA stimulation at the GV20, PC6, and KI1 acupoints in rats to test the learning and memory ability. Western blot, immunofluorescent staining, and enzyme-linked immunosorbent assay were conducted to assess the cellular and molecular mechanisms. RESULTS: EA stimulation attenuated neurological deficits. In the Morris water maze test, EA treatment ameliorated the MCAO/R-induced learning and memory impairment. Moreover, we observed that MCAO/R induced microglial activation and polarization in the ischemic hippocampus, whereas, EA treatment dampened microglial activation and inhibited M1 microglial polarization but enhanced M2 microglial polarization. EA treatment inhibited the increased expression of proinflammatory cytokines and enhanced the increased expression of anti-inflammatory cytokines. Finally, we found that EA treatment dampened microglial p38 mitogen-activated protein kinase (MAPK) phosphorylation. CONCLUSION: Collectively, our data suggested that EA treatment ameliorated cognitive impairment induced by MCAO/R and the underlying mechanism may be p38-mediated microglia polarization and neuroinflammation.

16.
IEEE Trans Biomed Eng ; PP2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345950

RESUMO

OBJECTIVE: Cancer cell invasion is a critical cause of fatality in cancer patients. Physiologically relevant tumor models play a key role in revealing the mechanisms underlying the invasive behavior of cancer cells. However, most existing models only consider interactions between cells and extracellular matrix (ECM) components while neglecting the role of matrix stiffness in tumor invasion. Here, we propose an effective approach that can construct stiffness-tunable substrates using digital mirror device (DMD)-based optical projection lithography to explore the invasion behavior of cancer cells. The printability, mechanical properties, and cell viability of three-dimensional (3D) models can be tuned by the concentration of prepolymer and the exposure time. The invasion trajectories of gastric cancer cells in tumor models of different stiffness were automatically detected and tracked in real-time using a deep learning algorithm. The results show that tumor models of different mechanical stiffness can yield distinct regulatory effects. Moreover, owing to the biophysical characteristics of the 3D in vitro model, different cellular substructures of cancer cells were induced. The proposed tunable substrate construction method can be used to build various microstructures to achieve simulation of cancer invasion and antitumor screening, which has great potential in promoting personalized therapy.

17.
Virol J ; 21(1): 35, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297280

RESUMO

BACKGROUND: Progressive hepatitis B virus (HBV) infection can result in cirrhosis, hepatocellular cancer, and chronic hepatitis. While antiviral drugs that are now on the market are efficient in controlling HBV infection, finding a functional cure is still quite difficult. Identifying host factors involved in regulating the HBV life cycle will contribute to the development of new antiviral strategies. Zinc finger proteins have a significant function in HBV replication, according to earlier studies. Zinc finger protein 148 (ZNF148), a zinc finger transcription factor, regulates the expression of various genes by specifically binding to GC-rich sequences within promoter regions. The function of ZNF148 in HBV replication was investigated in this study. METHODS: HepG2-Na+/taurocholate cotransporting polypeptide (HepG2-NTCP) cells and Huh7 cells were used to evaluate the function of ZNF148 in vitro. Northern blotting and real-time PCR were used to quantify the amount of viral RNA. Southern blotting and real-time PCR were used to quantify the amount of viral DNA. Viral protein levels were elevated, according to the Western blot results. Dual-luciferase reporter assays were used to examine the transcriptional activity of viral promoters. ZNF148's impact on HBV in vivo was investigated using an established rcccDNA mouse model. RESULTS: ZNF148 overexpression significantly decreased the levels of HBV RNAs and HBV core DNA in HBV-infected HepG2-NTCP cells and Huh7 cells expressing prcccDNA. Silencing ZNF148 exhibited the opposite effects in both cell lines. Furthermore, ZNF148 inhibited the activity of HBV ENII/Cp and the transcriptional activity of cccDNA. Mechanistic studies revealed that ZNF148 attenuated retinoid X receptor alpha (RXRα) expression by binding to the RXRα promoter sequence. RXRα binding site mutation or RXRα overexpression abolished the suppressive effect of ZNF148 on HBV replication. The inhibitory effect of ZNF148 was also observed in the rcccDNA mouse model. CONCLUSIONS: ZNF148 inhibited HBV replication by downregulating RXRα transcription. Our findings reveal that ZNF148 may be a new target for anti-HBV strategies.


Assuntos
Vírus da Hepatite B , Hepatite B , Animais , Camundongos , Humanos , Vírus da Hepatite B/fisiologia , Replicação Viral , Células Hep G2 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA Viral/genética
18.
J Biophotonics ; 17(4): e202300473, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38247109

RESUMO

The only existing approach for assessing the risk of developing acute ischemic stroke (AIS) necessitates that individuals possess a strong understanding of their health status. Our research gathered compelling evidence in favor of our hypothesis, suggesting that the likelihood of developing AIS can be assessed by analyzing the green autofluorescence (AF) of the skin and fingernails. Utilizing machine learning-based analyses of AF images, we found that the area under the curve (AUC) for distinguishing subjects with three risk factors from those with zero, one, or two risk factors was 0.79, 0.76, and 0.75, respectively. Our research has revealed that green AF serves as an innovative biomarker for assessing the risk of developing AIS. Our method is objective, non-invasive, efficient, and economic, which shows great promise to boost a technology for screening natural populations for risk of developing AIS.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Unhas , Fatores de Risco , Biomarcadores
19.
Brain Res ; 1828: 148790, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272156

RESUMO

A strong relationship between Alzheimer's disease (AD) and vascular dysfunction has been the focus of increasing attention in aging societies. In the present study, we examined the long-term effect of scallop-derived plasmalogen (sPlas) on vascular remodeling-related proteins in the brain of an AD with cerebral hypoperfusion (HP) mouse model. We demonstrated, for the first time, that cerebral HP activated the axis of the receptor for advanced glycation endproducts (RAGE)/phosphorylated signal transducer and activator of transcription 3 (pSTAT3)/provirus integration site for Moloney murine leukemia virus 1 (PIM1)/nuclear factor of activated T cells 1 (NFATc1), accounting for such cerebral vascular remodeling. Moreover, we also found that cerebral HP accelerated pSTAT3-mediated astrogliosis and activation of the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome, probably leading to cognitive decline. On the other hand, sPlas treatment attenuated the activation of the pSTAT3/PIM1/NFATc1 axis independent of RAGE and significantly suppressed NLRP3 inflammasome activation, demonstrating the beneficial effect on AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Plasmalogênios , Fatores de Transcrição NFI/metabolismo , Inflamassomos/metabolismo , Fator de Transcrição STAT3/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Remodelação Vascular
20.
J Phys Chem B ; 128(2): 440-450, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38185879

RESUMO

The human Na+/H+ exchanger (NHE1) plays a crucial role in maintaining intracellular pH by regulating the electroneutral exchange of a single intracellular H+ for one extracellular Na+ across the plasma membrane. Understanding the molecular mechanisms governing ion transport and the binding of inhibitors is of importance in the development of anticancer therapeutics targeting NHE1. In this context, we performed molecular dynamics (MD) simulations based on the recent cryo-electron microscopy (cryo-EM) structures of outward- and inward-facing conformations of NHE1. These simulations allowed us to explore the dynamics of the protein, examine the ion-translocation pore, and confirm that Asp267 is the ion-binding residue. Our free energy calculations did not show a significant difference between Na+ and K+ binding at the ion-binding site. Consequently, Na+ over K+ selectivity cannot be solely explained by differences in ion binding. Our MD simulations involving NHE1 inhibitors (cariporide and amiloride analogues) maintained stable interactions with Asp267 and Glu346. Our study highlights the importance of the salt bridge between the positively charged acylguanidine moiety and Asp267, which appears to play a role in the competitive inhibitory mechanism for this class of inhibitors. Our computational study provides a detailed mechanistic interpretation of experimental data and serves the basis of future structure-based inhibitor design.


Assuntos
Simulação de Dinâmica Molecular , Trocadores de Sódio-Hidrogênio , Humanos , Microscopia Crioeletrônica , Trocadores de Sódio-Hidrogênio/metabolismo , Transporte de Íons , Membrana Celular/metabolismo , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA