Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nat Biotechnol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744947

RESUMO

Cancer immunotherapy with autologous chimeric antigen receptor (CAR) T cells faces challenges in manufacturing and patient selection that could be avoided by using 'off-the-shelf' products, such as allogeneic CAR natural killer T (AlloCAR-NKT) cells. Previously, we reported a system for differentiating human hematopoietic stem and progenitor cells into AlloCAR-NKT cells, but the use of three-dimensional culture and xenogeneic feeders precluded its clinical application. Here we describe a clinically guided method to differentiate and expand IL-15-enhanced AlloCAR-NKT cells with high yield and purity. We generated AlloCAR-NKT cells targeting seven cancers and, in a multiple myeloma model, demonstrated their antitumor efficacy, expansion and persistence. The cells also selectively depleted immunosuppressive cells in the tumor microenviroment and antagonized tumor immune evasion via triple targeting of CAR, TCR and NK receptors. They exhibited a stable hypoimmunogenic phenotype associated with epigenetic and signaling regulation and did not induce detectable graft versus host disease or cytokine release syndrome. These properties of AlloCAR-NKT cells support their potential for clinical translation.

2.
Mol Ther ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38584391

RESUMO

The clinical potential of current FDA-approved chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy is encumbered by its autologous nature, which presents notable challenges related to manufacturing complexities, heightened costs, and limitations in patient selection. Therefore, there is a growing demand for off-the-shelf universal cell therapies. In this study, we have generated universal CAR-engineered NKT (UCAR-NKT) cells by integrating iNKT TCR engineering and HLA gene editing on hematopoietic stem cells (HSCs), along with an ex vivo, feeder-free HSC differentiation culture. The UCAR-NKT cells are produced with high yield, purity, and robustness, and they display a stable HLA-ablated phenotype that enables resistance to host cell-mediated allorejection. These UCAR-NKT cells exhibit potent antitumor efficacy to blood cancers and solid tumors, both in vitro and in vivo, employing a multifaceted array of tumor-targeting mechanisms. These cells are further capable of altering the tumor microenvironment by selectively depleting immunosuppressive tumor-associated macrophages and myeloid-derived suppressor cells. In addition, UCAR-NKT cells demonstrate a favorable safety profile with low risks of graft-versus-host disease and cytokine release syndrome. Collectively, these preclinical studies underscore the feasibility and significant therapeutic potential of UCAR-NKT cell products and lay a foundation for their translational and clinical development.

3.
Adv Sci (Weinh) ; : e2308248, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491904

RESUMO

Increasing immunotherapy response rate and durability can lead to significant improvements in cancer care. To address this challenge, a novel multivalent immune checkpoint therapeutic platform is constructed through site-specific ligation of anti-PD-L1 nanobody (Nb) on ferritin (Ftn) nanocage. Nb-Ftn blocks PD-1/PD-L1 interaction and downregulates PD-L1 levels via endocytosis-induced degradation. In addition, the cage structure of Ftn allows encapsulation of indocyanine green (ICG), an FDA-approved dye. Photothermal treatment with Nb-Ftn@ICG induces immunogenic death of tumor cells, which improves systemic immune response via maturation of dendritic cells and enhanced infiltration of T cells. Moreover, Nb-Ftn encapsulation significantly enhances cellular uptake, tumor accumulation and retention of ICG. In vivo assays showed that this nanoplatform ablates the primary tumor, suppresses abscopal tumors and inhibits tumor metastasis, leading to a prolonged survival rate. This work presents a novel strategy for improving cancer immunotherapy using multivalent nanobody-ferritin conjugates as immunological targeting and enhancing carriers.

4.
Angew Chem Int Ed Engl ; 63(16): e202319982, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361437

RESUMO

Enzymes are considered safe and effective therapeutic tools for various diseases. With the increasing integration of biomedicine and nanotechnology, artificial nanozymes offer advanced controllability and functionality in medical design. However, several notable gaps, such as catalytic diversity, specificity and biosafety, still exist between nanozymes and their native counterparts. Here we report a non-metal single-selenium (Se)-atom nanozyme (SeSAE), which exhibits potent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mimetic activity. This novel single atom nanozyme provides a safe alternative to conventional metal-based catalysts and effectively cuts off the cellular energy and reduction equivalents through its distinctive catalytic function in tumors. In this study, we have demonstrated the substantial efficacy of SeSAE as an antitumor nanomedicine across diverse mouse models without discernible systemic adverse effects. The mechanism of the NADPH oxidase-like activity of the non-metal SeSAE was rationalized by density functional theory calculations. Furthermore, comprehensive elucidation of the biological functions, cell death pathways, and metabolic remodeling effects of the nanozyme was conducted, aiming to provide valuable insights into the development of single atom nanozymes with clinical translation potential.


Assuntos
Nanotecnologia , Neoplasias , Animais , Camundongos , Metais , Catálise , Neoplasias/tratamento farmacológico , Nanomedicina
5.
BME Front ; 4: 0015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849678

RESUMO

Objective: A protein-based leaking-proof theranostic nanoplatform for dual-modality imaging-guided tumor photodynamic therapy (PDT) has been designed. Impact Statement: A site-specific conjugation of chlorin e6 (Ce6) to ferrimagnetic ferritin (MFtn-Ce6) has been constructed to address the challenge of unexpected leakage that often occurs during small-molecule drug delivery. Introduction: PDT is one of the most promising approaches for tumor treatment, while a delivery system is typically required for hydrophobic photosensitizers. However, the nonspecific distribution and leakage of photosensitizers could lead to insufficient drug accumulation in tumor sites. Methods: An engineered ferritin was generated for site-specific conjugation of Ce6 to obtain a leaking-proof delivery system, and a ferrimagnetic core was biomineralized in the cavity of ferritin, resulting in a fluorescent ferrimagnetic ferritin nanoplatform (MFtn-Ce6). The distribution and tumor targeting of MFtn-Ce6 can be detected by magnetic resonance imaging (MRI) and fluorescence imaging (FLI). Results: MFtn-Ce6 showed effective dual-modality MRI and FLI. A prolonged in vivo circulation and increased tumor accumulation and retention of photosensitizer was observed. The time-dependent distribution of MFtn-Ce6 can be precisely tracked in real time to find the optimal time window for PDT treatment. The colocalization of ferritin and the iron oxide core confirms the high stability of the nanoplatform in vivo. The results showed that mice treated with MFtn-Ce6 exhibited marked tumor-suppressive activity after laser irradiation. Conclusion: The ferritin-based leaking-proof nanoplatform can be used for the efficient delivery of the photosensitizer to achieve an enhanced therapeutic effect. This method established a general approach for the dual-modality imaging-guided tumor delivery of PDT agents.

6.
ACS Nano ; 17(14): 14152-14160, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37410702

RESUMO

Extensive macroscale two-dimensional (2-D) platinum (Pt) nanowire network (NWN) sheets are created through a hierarchical self-assembly process with the aid of biomolecular ligands. The Pt NWN sheet is assembled from the attachment growth of 1.9 nm-sized 0-D nanocrystals into 1-D nanowires featuring a high density of grain boundaries, which then interconnect to form monolayer network structures extending into centimeter-scale size. Further investigation into the formation mechanism reveals that the initial emergence of NWN sheets occurs at the gas/liquid interfaces of the bubbles produced by sodium borohydride (NaBH4) during the synthesis process. Upon the rupture of these bubbles, an exocytosis-like process releases the Pt NWN sheets at the gas/liquid surface, which subsequently merge into a continuous monolayer Pt NWN sheet. The Pt NWN sheets exhibit outstanding oxygen reduction reaction (ORR) activities, with specific and mass activities 12.0 times and 21.2 times greater, respectively, than those of current state-of-the-art commercial Pt/C electrocatalysts.

7.
Angew Chem Int Ed Engl ; 62(27): e202304312, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137872

RESUMO

The metabolic reprogramming of tumors requires high levels of adenosine triphosphate (ATP) to maintain therapeutic resistance, posing a major challenge for photothermal therapy (PTT). Although raising the temperature helps in tumor ablation, it frequently leads to severe side effects. Therefore, improving the therapeutic response and promoting healing are critical considerations in the development of PTT. Here, we proposed a gas-mediated energy remodeling strategy to improve mild PTT efficacy while minimizing side effects. In the proof-of-concept study, a Food and Drug Administration (FDA)-approved drug-based hydrogen sulfide (H2 S) donor was developed to provide a sustained supply of H2 S to tumor sites, serving as an adjuvant to PTT. This approach proved to be highly effective in disrupting the mitochondrial respiratory chain, inhibiting ATP generation, and reducing the overexpression of heat shock protein 90 (HSP90), which ultimately amplified the therapeutic outcome. With the ability to reverse tumor thermotolerance, this strategy delivered a greatly potent antitumor response, achieving complete tumor ablation in a single treatment while minimizing harm to healthy tissues. Thus, it holds great promise to be a universal solution for overcoming the limitations of PTT and may serve as a valuable paradigm for the future clinical translation of photothermal nanoagents.


Assuntos
Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Neoplasias/tratamento farmacológico , Temperatura , Linhagem Celular Tumoral , Nanopartículas/uso terapêutico , Fototerapia
8.
Adv Mater ; 35(17): e2210037, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36718883

RESUMO

Nanocatalysts are promising tumor therapeutics due to their ability to induce reactive oxygen species in the tumor microenvironment. Although increasing metal loading can improve catalytic activity, the quandary of high metal content versus potential systemic biotoxicity remains challenging. Here, a fully exposed active site strategy by site-specific anchoring of single iridium (Ir) atoms on the outer surface of a nitrogen-doped carbon composite (Ir single-atom catalyst (SAC)) is reported to achieve remarkable catalytic performance at ultralow metal content (≈0.11%). The Ir SAC exhibits prominent dual enzymatic activities to mimic peroxidase and glutathione peroxidase, which catalyzes the conversion of endogenous H2 O2 into •OH in the acidic TME and depletes glutathione (GSH) simultaneously. With an advanced support of GSH-trapping platinum(IV) and encapsulation with a red-blood-cell membrane, this nanocatalytic agent (Pt@IrSAC/RBC) causes intense lipid peroxidation that boosts tumor cell ferroptosis. The Pt@IrSAC/RBC demonstrates superior therapeutic efficacy in a mouse triple-negative mammary carcinoma model, resulting in complete tumor ablation in a single treatment session with negligible side effects. These outcomes may provide valuable insights into the design of nanocatalysts with high performance and biosafety for biomedical applications.


Assuntos
Ferroptose , Neoplasias , Animais , Camundongos , Irídio , Carbono , Catálise , Corantes , Modelos Animais de Doenças , Glutationa , Linhagem Celular Tumoral , Microambiente Tumoral
9.
Adv Drug Deliv Rev ; 192: 114648, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513163

RESUMO

Enzyme-mimicking nanocatalysts, also termed nanozymes, have attracted much attention in recent years. They are considered potential alternatives to natural enzymes due to their multiple catalytic activities and high stability. However, concerns regarding the colloidal stability, catalytic specificity, efficiency and biosafety of nanomaterials in biomedical applications still need to be addressed. Proteins are biodegradable macromolecules that exhibit superior biocompatibility and inherent bioactivities; hence, the protein modification of nanocatalysts is expected to improve their bioavailability to match clinical needs. The diversity of amino acid residues in proteins provides abundant functional groups for the conjugation or encapsulation of nanocatalysts. Moreover, protein encapsulation can not only improve the overall performance of nanocatalysts in biological systems, but also bestow materials with new features, such as targeting and retention in pathological sites. This review aims to report the recent developments and perspectives of protein-encapsulated catalysts in their functional improvements, modification methods and applications in biomedicine.


Assuntos
Nanoestruturas , Medicina de Precisão , Humanos , Nanoestruturas/química , Catálise
10.
iScience ; 25(9): 104859, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36034226

RESUMO

Allo-HSCT is a curative therapy for hematologic malignancies owing to GvL effect mediated by alloreactive T cells; however, the same T cells also mediate GvHD, a severe side effect limiting the widespread application of allo-HSCT in clinics. Invariant natural killer T (iNKT) cells can ameliorate GvHD while preserving GvL effect, but the clinical application of these cells is restricted by their scarcity. Here, we report the successful generation of third-party HSC-engineered human iNKT (3rdHSC-iNKT) cells using a method combining HSC gene engineering and in vitro HSC differentiation. The 3rdHSC-iNKT cells closely resembled the CD4-CD8-/+ subsets of endogenous human iNKT cells in phenotype and functionality. These cells displayed potent anti-GvHD functions by eliminating antigen-presenting myeloid cells in vitro and in xenograft models without negatively impacting tumor eradication by allogeneic T cells in preclinical models of lymphoma and leukemia, supporting 3rdHSC-iNKT cells as a promising off-the-shelf cell therapy candidate for GvHD prophylaxis.

11.
Stem Cell Res Ther ; 13(1): 112, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313965

RESUMO

BACKGROUND: New COVID-19 treatments are desperately needed as case numbers continue to rise and emergent strains threaten vaccine efficacy. Cell therapy has revolutionized cancer treatment and holds much promise in combatting infectious disease, including COVID-19. Invariant natural killer T (iNKT) cells are a rare subset of T cells with potent antiviral and immunoregulatory functions and an excellent safety profile. Current iNKT cell strategies are hindered by the extremely low presence of iNKT cells, and we have developed a platform to overcome this critical limitation. METHODS: We produced allogeneic HSC-engineered iNKT (AlloHSC-iNKT) cells through TCR engineering of human cord blood CD34+ hematopoietic stem cells (HSCs) and differentiation of these HSCs into iNKT cells in an Ex Vivo HSC-Derived iNKT Cell Culture. We then established in vitro SARS-CoV-2 infection assays to assess AlloHSC-iNKT cell antiviral and anti-hyperinflammation functions. Lastly, using in vitro and in vivo preclinical models, we evaluated AlloHSC-iNKT cell safety and immunogenicity for off-the-shelf application. RESULTS: We reliably generated AlloHSC-iNKT cells at high-yield and of high-purity; these resulting cells closely resembled endogenous human iNKT cells in phenotypes and functionalities. In cell culture, AlloHSC-iNKT cells directly killed SARS-CoV-2 infected cells and also selectively eliminated SARS-CoV-2 infection-stimulated inflammatory monocytes. In an in vitro mixed lymphocyte reaction (MLR) assay and an NSG mouse xenograft model, AlloHSC-iNKT cells were resistant to T cell-mediated alloreaction and did not cause GvHD. CONCLUSIONS: Here, we report a method to robustly produce therapeutic levels of AlloHSC-iNKT cells. Preclinical studies showed that these AlloHSC-iNKT cells closely resembled endogenous human iNKT cells, could reduce SARS-CoV-2 virus infection load and mitigate virus infection-induced hyperinflammation, and meanwhile were free of GvHD-risk and resistant to T cell-mediated allorejection. These results support the development of AlloHSC-iNKT cells as a promising off-the-shelf cell product for treating COVID-19; such a cell product has the potential to target the new emerging SARS-CoV-2 variants as well as the future new emerging viruses.


Assuntos
COVID-19 , Células T Matadoras Naturais , Animais , COVID-19/terapia , Células-Tronco Hematopoéticas , Humanos , Camundongos , SARS-CoV-2
12.
Cell Rep Med ; 2(11): 100449, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34841295

RESUMO

Cell-based immunotherapy has become the new-generation cancer medicine, and "off-the-shelf" cell products that can be manufactured at large scale and distributed readily to treat patients are necessary. Invariant natural killer T (iNKT) cells are ideal cell carriers for developing allogeneic cell therapy because they are powerful immune cells targeting cancers without graft-versus-host disease (GvHD) risk. However, healthy donor blood contains extremely low numbers of endogenous iNKT cells. Here, by combining hematopoietic stem cell (HSC) gene engineering and in vitro differentiation, we generate human allogeneic HSC-engineered iNKT (AlloHSC-iNKT) cells at high yield and purity; these cells closely resemble endogenous iNKT cells, effectively target tumor cells using multiple mechanisms, and exhibit high safety and low immunogenicity. These cells can be further engineered with chimeric antigen receptor (CAR) to enhance tumor targeting or/and gene edited to ablate surface human leukocyte antigen (HLA) molecules and further reduce immunogenicity. Collectively, these preclinical studies demonstrate the feasibility and cancer therapy potential of AlloHSC-iNKT cell products and lay a foundation for their translational and clinical development.


Assuntos
Células Alógenas/imunologia , Engenharia Celular , Células-Tronco Hematopoéticas/imunologia , Imunoterapia , Células T Matadoras Naturais/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Células Alógenas/metabolismo , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Antígenos HLA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Células T Matadoras Naturais/metabolismo , Fenótipo , Receptores de Antígenos Quiméricos/metabolismo , Transcriptoma/genética
13.
Food Sci Nutr ; 9(7): 3602-3616, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34262721

RESUMO

Ophiocordyceps lanpingensis is an edible mushroom distributed over the south-eastern part of the Tibet Plateau, which is also recognized as an effective ethnomedicine to alleviate diseases. This study explored the effects of a kind of Ophiocordyceps lanpingensis neutral polysaccharide (ONP) on RAW264.7 macrophages and cisplatin-induced nephrotoxicity. The results showed that ONP relieved the inflammatory response of RAW264.7 macrophages by increasing the expression level of anti-inflammatory factor IL-10. Furthermore, ONP treatment significantly prolonged the survival of the mice treated by cisplatin through decelerating pathological progress and alleviating damaged functions of the kidneys. Compared with the cisplatin group, ONP reduced the oxidative stress of the renal cells and the expression levels of pro-inflammatory factors. Apoptosis of renal cells was also weakened in the ONP treatment group. These findings indicated that ONP alleviated cisplatin nephrotoxicity mainly by inhibiting oxidative stress, inflammation, and apoptosis in the kidneys, underscoring the potential of ONP supplementation to alleviate the side effects of cisplatin chemotherapy.

14.
Nat Commun ; 12(1): 3530, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112755

RESUMO

Targeting tumor-associated macrophages (TAMs) is a promising strategy to modify the immunosuppressive tumor microenvironment and improve cancer immunotherapy. Monoamine oxidase A (MAO-A) is an enzyme best known for its function in the brain; small molecule MAO inhibitors (MAOIs) are clinically used for treating neurological disorders. Here we observe MAO-A induction in mouse and human TAMs. MAO-A-deficient mice exhibit decreased TAM immunosuppressive functions corresponding with enhanced antitumor immunity. MAOI treatment induces TAM reprogramming and suppresses tumor growth in preclinical mouse syngeneic and human xenograft tumor models. Combining MAOI and anti-PD-1 treatments results in synergistic tumor suppression. Clinical data correlation studies associate high intratumoral MAOA expression with poor patient survival in a broad range of cancers. We further demonstrate that MAO-A promotes TAM immunosuppressive polarization via upregulating oxidative stress. Together, these data identify MAO-A as a critical regulator of TAMs and support repurposing MAOIs for TAM reprogramming to improve cancer immunotherapy.


Assuntos
Imunoterapia/métodos , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Neoplasias/tratamento farmacológico , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Estimativa de Kaplan-Meier , Linfoma/genética , Linfoma/metabolismo , Linfoma/mortalidade , Melanoma/genética , Melanoma/metabolismo , Melanoma/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Monoaminoxidase/deficiência , Monoaminoxidase/genética , Inibidores da Monoaminoxidase/uso terapêutico , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/mortalidade , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/mortalidade , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo , Análise de Célula Única , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Sci Immunol ; 6(59)2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990379

RESUMO

Monoamine oxidase A (MAO-A) is an enzyme best known for its function in the brain, where it breaks down neurotransmitters and thereby influences mood and behavior. Small-molecule MAO inhibitors (MAOIs) have been developed and are clinically used for treating depression and other neurological disorders. However, the involvement of MAO-A in antitumor immunity has not been reported. Here, we observed induction of the Maoa gene in tumor-infiltrating immune cells. Maoa knockout mice exhibited enhanced antitumor T cell immunity and suppressed tumor growth. MAOI treatment significantly suppressed tumor growth in preclinical mouse syngeneic and human xenograft tumor models in a T cell-dependent manner. Combining MAOI and anti-PD-1 treatments generated synergistic tumor suppression effects. Clinical data correlation studies associated intratumoral MAOA expression with T cell dysfunction and decreased patient survival in a broad range of cancers. We further demonstrated that MAO-A restrains antitumor T cell immunity through controlling intratumoral T cell autocrine serotonin signaling. Together, these data identify MAO-A as an immune checkpoint and support repurposing MAOI antidepressants for cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Imunoterapia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/imunologia , Neoplasias/terapia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monoaminoxidase/genética , Neoplasias/imunologia , Neoplasias/patologia
16.
Biomed Pharmacother ; 126: 110058, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32145591

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with growing prevalence. Currently available therapies for treating IPF are not desirable due to the limited efficacy and multiple side effects. Ophiocordyceps lanpingensis is one strain of entomogenous fungi, which has been collected from the eastern part of the Himalayas. This study revealed that O. lanpingensis polysaccharides (OLP) could attenuate bleomycin (BLM) induced lung fibrosis in mice. Results showed that OLP treatments significantly reduced BLM-induced collagen deposition and decreased the accumulation of macrophages. The oxidative stress of the lung was alleviated by OLP. The expression levels of pro-inflammatory and pro-fibrogenic factors in OLP groups were also decreased compared with those in the BLM group, which might explain the improved alveolar integrity and function in the OLP treated groups. Our findings indicated that OLP treatment could alleviate pulmonary fibrosis progression mainly through reducing the recruitment of macrophages to the lungs.


Assuntos
Hypocreales/química , Pulmão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/farmacologia , Fibrose Pulmonar/prevenção & controle , Animais , Bleomicina/toxicidade , Colágeno/metabolismo , Modelos Animais de Doenças , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/isolamento & purificação , Fibrose Pulmonar/induzido quimicamente
17.
J Exp Med ; 216(12): 2869-2882, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31628186

RESUMO

T cells demand massive energy to combat cancer; however, the metabolic regulators controlling antitumor T cell immunity have just begun to be unveiled. When studying nutrient usage of tumor-infiltrating immune cells in mice, we detected a sharp increase of the expression of a CrT (Slc6a8) gene, which encodes a surface transporter controlling the uptake of creatine into a cell. Using CrT knockout mice, we showed that creatine uptake deficiency severely impaired antitumor T cell immunity. Supplementing creatine to WT mice significantly suppressed tumor growth in multiple mouse tumor models, and the combination of creatine supplementation with a PD-1/PD-L1 blockade treatment showed synergistic tumor suppression efficacy. We further demonstrated that creatine acts as a "molecular battery" conserving bioenergy to power T cell activities. Therefore, our results have identified creatine as an important metabolic regulator controlling antitumor T cell immunity, underscoring the potential of creatine supplementation to improve T cell-based cancer immunotherapies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Creatina/metabolismo , Imunomodulação , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Creatina/administração & dosagem , Creatina/deficiência , Suplementos Nutricionais , Metabolismo Energético , Regulação Neoplásica da Expressão Gênica , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Neoplasias/genética , Neoplasias/patologia , Microambiente Tumoral
18.
Cell Stem Cell ; 25(4): 542-557.e9, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31495780

RESUMO

Invariant natural killer T (iNKT) cells are potent immune cells for targeting cancer; however, their clinical application has been hindered by their low numbers in cancer patients. Here, we developed a proof-of-concept for hematopoietic stem cell-engineered iNKT (HSC-iNKT) cell therapy with the potential to provide therapeutic levels of iNKT cells for a patient's lifetime. Using a human HSC engrafted mouse model and a human iNKT TCR gene engineering approach, we demonstrated the efficient and long-term generation of HSC-iNKT cells in vivo. These HSC-iNKT cells closely resembled endogenous human iNKT cells, could deploy multiple mechanisms to attack tumor cells, and effectively suppressed tumor growth in vivo in multiple human tumor xenograft mouse models. Preclinical safety studies showed no toxicity or tumorigenicity of the HSC-iNKT cell therapy. Collectively, these results demonstrated the feasibility, safety, and cancer therapy potential of the proposed HSC-iNKT cell therapy and laid a foundation for future clinical development.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Imunoterapia Adotiva/métodos , Células T Matadoras Naturais/fisiologia , Neoplasias/terapia , Animais , Células Cultivadas , Engenharia Genética , Humanos , Camundongos , Camundongos SCID , Células T Matadoras Naturais/transplante , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Proc Natl Acad Sci U S A ; 115(45): E10702-E10711, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348802

RESUMO

Tumor-specific T cell receptor (TCR) gene transfer enables specific and potent immune targeting of tumor antigens. Due to the prevalence of the HLA-A2 MHC class I supertype in most human populations, the majority of TCR gene therapy trials targeting public antigens have employed HLA-A2-restricted TCRs, limiting this approach to those patients expressing this allele. For these patients, TCR gene therapy trials have resulted in both tantalizing successes and lethal adverse events, underscoring the need for careful selection of antigenic targets. Broad and safe application of public antigen-targeted TCR gene therapies will require (i) selecting public antigens that are highly tumor-specific and (ii) targeting multiple epitopes derived from these antigens by obtaining an assortment of TCRs restricted by multiple common MHC alleles. The canonical cancer-testis antigen, NY-ESO-1, is not expressed in normal tissues but is aberrantly expressed across a broad array of cancer types. It has also been targeted with A2-restricted TCR gene therapy without adverse events or notable side effects. To enable the targeting of NY-ESO-1 in a broader array of HLA haplotypes, we isolated TCRs specific for NY-ESO-1 epitopes presented by four MHC molecules: HLA-A2, -B07, -B18, and -C03. Using these TCRs, we pilot an approach to extend TCR gene therapies targeting NY-ESO-1 to patient populations beyond those expressing HLA-A2.


Assuntos
Proteínas de Homeodomínio/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Receptores de Antígenos de Linfócitos T/isolamento & purificação , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Clonagem Molecular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA