Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Cancer ; 15(12): 3995-4006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911367

RESUMO

Background: This research aims to investigate the expression and biological roles of miR-497-5p in gastric cancer (GC), and its possible mechanisms. Methods: Real Time Quantitative PCR (RT-qPCR) was performed to detect miR-497-5p in GC and normal tissues, as well as GC cell lines versus normal gastric mucosal cells (GES-1). The effects of miR-497-5p overexpression on proliferation were measured by the cell counting kit-8 (CCK8) assay and ethidium bromide (EdU) assay. Flow cytometry was used to assess the cell cycle. The migration and invasion were evaluated by scratch assay and Transwell assay, respectively. Gene targets of miR-497-5p were predicted using "multiMiR" R package combined with mirTarPathway database. And then luciferase reporter experiment was used to evaluate the activity of ERBB2 by miR-497-5p mimics in GC cell line. Besides, functional experiments were performed to verify the impact of miR-497-5p /ERBB2 on phenotypes of GC cells. Results: Compared with the normal tissues and mucosal cells, miR-497-5p was reduced in GC tissues and GC cell lines. miR-497-5p significantly decreased proliferation, migration, and invasion capacity, with an elevated apoptosis ratio of gastric cancer cells. Bioinformatics indicated that ERBB2 might be the potential target of miR-497-5p Dual-luciferase reporter experiments showed it adversely regulated ERBB2 3'UTR luciferase activity. The expression of ERBB2 in GC tissues and cells is significantly higher compared to normal tissues and cells. Over-expression of ERBB2 in gastric cancer cells significantly reduced miR-497-5p's inhibitory effect on the malignant behavior of GC cells. Conclusion: miR-497-5p was significantly down-regulated in GC tissues and cells, which inhibited the malignant features of GC cells by targeting ERBB2.

2.
Front Cell Infect Microbiol ; 14: 1359432, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779567

RESUMO

Diabetic nephropathy (DN) is one of the main complications of diabetes and a major cause of end-stage renal disease, which has a severe impact on the quality of life of patients. Strict control of blood sugar and blood pressure, including the use of renin-angiotensin-aldosterone system inhibitors, can delay the progression of diabetic nephropathy but cannot prevent it from eventually developing into end-stage renal disease. In recent years, many studies have shown a close relationship between gut microbiota imbalance and the occurrence and development of DN. This review discusses the latest research findings on the correlation between gut microbiota and microbial metabolites in DN, including the manifestations of the gut microbiota and microbial metabolites in DN patients, the application of the gut microbiota and microbial metabolites in the diagnosis of DN, their role in disease progression, and so on, to elucidate the role of the gut microbiota and microbial metabolites in the occurrence and prevention of DN and provide a theoretical basis and methods for clinical diagnosis and treatment.


Assuntos
Nefropatias Diabéticas , Microbioma Gastrointestinal , Humanos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/microbiologia , Progressão da Doença , Disbiose
3.
Mol Oncol ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501452

RESUMO

Androgen-regulated DNA damage response (DDR) is one of the essential mechanisms in prostate cancer (PCa), a hormone-sensitive disease. The heterogeneous nuclear ribonucleoprotein K (hnRNPK)-homology splicing regulatory protein known as far upstream element-binding protein 2 (KHSRP) is an RNA-binding protein that can attach to AU-rich elements in the 3' untranslated region (3'-UTR) of messenger RNAs (mRNAs) to mediate mRNA decay and emerges as a critical regulator in the DDR to preserve genome integrity. Nevertheless, how KHSRP responds to androgen-regulated DDR in PCa development remains unclear. This study found that androgen can significantly induce acetylation of KHSRP, which intrinsically drives tumor growth in xenografted mice. Moreover, enhanced KHSRP acetylation upon androgen stimuli impedes KHSRP-regulated DDR gene expression, as seen by analyzing RNA sequencing (RNA-seq) and Gene Set Enrichment Analysis (GSEA) datasets. Additionally, NAD-dependent protein deacetylase sirtuin-7 (SIRT7) is a promising deacetylase of KHSRP, and androgen stimuli impairs its interaction with KHSRP to sustain the increased KHSRP acetylation level in PCa. We first report the acetylation of KHSRP induced by androgen, which interrupts the KHSRP-regulated mRNA decay of the DDR-related genes to promote the tumorigenesis of PCa. This study provides insight into KHSRP biology and potential therapeutic strategies for PCa treatment, particularly that of castration-resistant PCa.

4.
Cell Mol Life Sci ; 81(1): 73, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308713

RESUMO

N4 acetylcytidine (ac4C) modification mainly occurs on tRNA, rRNA, and mRNA, playing an important role in the expression of genetic information. However, it is still unclear whether microRNAs have undergone ac4C modification and their potential physiological and pathological functions. In this study, we identified that NAT10/THUMPD1 acetylates primary microRNAs (pri-miRNAs) with ac4C modification. Knockdown of NAT10 suppresses and augments the expression levels of mature miRNAs and pri-miRNAs, respectively. Molecular mechanism studies found that pri-miRNA ac4C promotes the processing of pri-miRNA into precursor miRNA (pre-miRNA) by enhancing the interaction of pri-miRNA and DGCR8, thereby increasing the biogenesis of mature miRNA. Knockdown of NAT10 attenuates the oncogenic characters of lung cancer cells by regulating miRNA production in cancers. Moreover, NAT10 is highly expressed in various clinical cancers and negatively correlated with poor prognosis. Thus, our results reveal that NAT10 plays a crucial role in cancer initiation and progression by modulating pri-miRNA ac4C to affect miRNA production, which would provide an attractive therapeutic strategy for cancers.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , Citidina/genética , Neoplasias/genética
5.
Adv Sci (Weinh) ; 11(15): e2305541, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351659

RESUMO

Non-small-cell lung cancer (NSCLC) is a highly lethal tumor that often develops resistance to targeted therapy. It is shown that Tank-binding kinase 1 (TBK1) phosphorylates AGO2 at S417 (pS417-AGO2), which promotes NSCLC progression by increasing the formation of microRNA-induced silencing complex (miRISC). High levels of pS417-AGO2 in clinical NSCLC specimens are positively associated with poor prognosis. Interestingly, the treatment with EGFR inhibitor Gefitinib can significantly induce pS417-AGO2, thereby increasing the formation and activity of oncogenic miRISC, which may contribute to NSCLC resistance to Gefitinib. Based on these, two therapeutic strategies is developed. One is jointly to antagonize multiple oncogenic miRNAs highly expressed in NSCLC and use TBK1 inhibitor Amlexanox reducing the formation of oncogenic miRISC. Another approach is to combine Gefitinib with Amlexanox to inhibit the progression of Gefitinib-resistant NSCLC. This findings reveal a novel mechanism of oncogenic miRISC regulation by TBK1-mediated pS417-AGO2 and suggest potential therapeutic approaches for NSCLC.


Assuntos
Aminopiridinas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética
6.
Mol Oncol ; 18(3): 580-605, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38060346

RESUMO

Homologous recombination (HR) repair for DNA double-strand breaks (DSBs) is critical for maintaining genome stability and conferring the resistance of tumor cells to chemotherapy. Nuclear PTEN which contains both phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and protein phosphatase plays a key role in HR repair, but the underlying mechanism remains largely elusive. We find that SUMOylated PTEN promotes HR repair but represses nonhomologous end joining (NHEJ) repair by directly dephosphorylating TP53-binding protein 1 (53BP1). During DNA damage responses (DDR), tumor suppressor ARF (p14ARF) was phosphorylated and then interacted efficiently with PTEN, thus promoting PTEN SUMOylation as an atypical SUMO E3 ligase. Interestingly, SUMOylated PTEN was subsequently recruited to the chromatin at DSB sites. This was because SUMO1 that was conjugated to PTEN was recognized and bound by the SUMO-interacting motif (SIM) of breast cancer type 1 susceptibility protein (BRCA1), which has been located to the core of 53BP1 foci on chromatin during S/G2 stage. Furthermore, these chromatin-loaded PTEN directly and specifically dephosphorylated phosphothreonine-543 (pT543) of 53BP1, resulting in the dissociation of the 53BP1 complex, which facilitated DNA end resection and ongoing HR repair. SUMOylation-site-mutated PTENK254R mice also showed decreased DNA damage repair in vivo. Blocking the PTEN SUMOylation pathway with either a SUMOylation inhibitor or a p14ARF(2-13) peptide sensitized tumor cells to chemotherapy. Our study therefore provides a new mechanistic understanding of PTEN in HR repair and clinical intervention of chemoresistant tumors.


Assuntos
Neoplasias , Proteína Supressora de Tumor p14ARF , Animais , Camundongos , Proteína BRCA1/genética , Cromatina , DNA/metabolismo , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Neoplasias/genética , Proteína Supressora de Tumor p14ARF/genética , Proteína Supressora de Tumor p14ARF/metabolismo
7.
Mol Oncol ; 18(1): 170-189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37867415

RESUMO

Endoribonuclease DICER is an RNase III enzyme that mainly processes microRNAs in the cytoplasm but also participates in nuclear functions such as chromatin remodelling, epigenetic modification and DNA damage repair. The expression of nuclear DICER is low in most human cancers, suggesting a tight regulation mechanism that is not well understood. Here, we found that ubiquitin carboxyl-terminal hydrolase 7 (USP7), a deubiquitinase, bounded to DICER and reduced its nuclear protein level by promoting its ubiquitination and degradation through MDM2, a newly identified E3 ubiquitin-protein ligase for DICER. This USP7-MDM2-DICER axis impaired histone γ-H2AX signalling and the recruitment of DNA damage response (DDR) factors, possibly by influencing the processing of small DDR noncoding RNAs. We also showed that this negative regulation of DICER by USP7 via MDM2 was relevant to human tumours using cellular and clinical data. Our findings revealed a new way to understand the role of DICER in malignant tumour development and may offer new insights into the diagnosis, treatment and prognosis of cancers.


Assuntos
Neoplasias , Ribonuclease III , Humanos , Dano ao DNA , Reparo do DNA , Neoplasias/genética , Neoplasias/tratamento farmacológico , Proteínas Nucleares/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Ubiquitinação
8.
Cell Metab ; 35(12): 2216-2230.e8, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37979583

RESUMO

Mammalian target of rapamycin complex 1 (mTORC1) monitors cellular amino acid changes for function, but the molecular mediators of this process remain to be fully defined. Here, we report that depletion of cellular amino acids, either alone or in combination, leads to the ubiquitination of mTOR, which inhibits mTORC1 kinase activity by preventing substrate recruitment. Mechanistically, amino acid depletion causes accumulation of uncharged tRNAs, thereby stimulating GCN2 to phosphorylate FBXO22, which in turn accrues in the cytoplasm and ubiquitinates mTOR at Lys2066 in a K27-linked manner. Accordingly, mutation of mTOR Lys2066 abolished mTOR ubiquitination in response to amino acid depletion, rendering mTOR insensitive to amino acid starvation both in vitro and in vivo. Collectively, these data reveal a novel mechanism of amino acid sensing by mTORC1 via a previously unknown GCN2-FBXO22-mTOR pathway that is uniquely controlled by uncharged tRNAs.


Assuntos
Proteínas Serina-Treonina Quinases , Serina-Treonina Quinases TOR , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Aminoácidos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
9.
Front Mol Biosci ; 10: 1137215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911524

RESUMO

Post-translational modifications of proteins play very important roles in regulating RNA metabolism and affect many biological pathways. Here we mainly summarize the crucial functions of small ubiquitin-like modifier (SUMO) modification in RNA metabolism including transcription, splicing, tailing, stability and modification, as well as its impact on the biogenesis and function of microRNA (miRNA) in particular. This review also highlights the current knowledge about SUMOylation regulation in RNA metabolism involved in many cellular processes such as cell proliferation and apoptosis, which is closely related to tumorigenesis and cancer progression.

10.
Oncogene ; 42(14): 1058-1071, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36765146

RESUMO

Receptor-type protein tyrosine phosphatase α (RPTPα) is one of the typical PTPs that play indispensable roles in many cellular processes associated with cancers. It has been considered as the most powerful regulatory oncogene for Src activation, however it is unclear how its biological function is regulated by post-translational modifications. Here, we show that the extracellular segment of RPTPα is highly N-glycosylated precisely at N21, N36, N68, N80, N86, N104 and N124 sites. Such N-glycosylation modifications mediated by glucose concentration alter the subcellular localization of RPTPα from Golgi apparatus to plasma membrane, enhance the interaction of RPTPα with Src, which in turn enhances the activation of Src and ultimately promotes tumor development. Our results identified the N-glycosylation modifications of RPTPα, and linked it to glucose starvation and Src activation for promoting tumor development, which provides new evidence for the potential antitumor therapy.


Assuntos
Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores , Humanos , Membrana Celular/metabolismo , Glicosilação , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo , Processamento de Proteína Pós-Traducional
11.
Rev Esp Enferm Dig ; 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36263810

RESUMO

BACKGROUND: Platelet indices have the potential for the evaluation of the activity of non-alcoholic fatty liver disease (NAFLD), but their associations are under hard debate. This meta-analysis aims to assess whether platelet count (PC), mean platelet volume (MPV) and platelet distribution width (PDW) are associated with NAFLD and its progression. METHODS: A literature search was conducted using electronic databases to find publications up to July 2022, where the relationship between PC, MPV, PDW and NAFLD was evaluated. Random-effects models were applied to pool effect estimates that were presented as standardized mean differences (SMD) with 95% confidence interval (CI). RESULTS: Nineteen studies involving 3592 NAFLD patients and 1194 healthy individuals were included. The pooled results showed that NAFLD patients had a lower PC (SMD=-0.66, 95% CI =-1.22 to -0.09, P=0.023) but a higher MPV (SMD=0.89, 95% CI=0.26-1.51, P=0.005) and PDW (SMD=0.55, 95% CI=0.11-0.99, P=0.014) compared to healthy controls. Patients with non-alcoholic steatohepatitis (NASH) exhibited a lower PC (SMD=-0.86, 95% CI=-1.20 to -0.52, P<0.001) and a higher MPV (SMD=0.71, 95% CI=0.40-1.02, P<0.001) than non-NASH individuals. A meta-regression analysis demonstrated that MPV was significantly positively correlated with aspartate aminotransferase (P=0.008), the total cholesterol (P=0.003), triglyceride (P=0.006) and low-density lipoprotein cholesterol (P=0.007), but was significantly negatively correlated with high-density lipoprotein cholesterol (P=0.010). CONCLUSION: This meta-analysis revealed that NAFLD patients presented a reduced PC but an increased MPV and PDW, and the changes might be associated with NAFLD severity. A higher MPV is associated with lipid metabolic disorders in NAFLD.

12.
Medicine (Baltimore) ; 101(38): e30579, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36197242

RESUMO

BACKGROUND: The neutrophil-to-lymphocyte ratio (NLR) has been suggested to be a potential biomarker for assessing the systemic inflammatory response in polycystic ovary syndrome (PCOS). This meta-analysis is aimed at evaluating whether PCOS patients present with a higher NLR and whether obesity, metabolic, and hormonal indices have effects on the states. METHODS: We performed a literature search on PubMed, Embase and Web of Science (last update: August 2, 2022). Pooled standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated by applying random-effects models. Meta-regression analyses were used to explore the sources of heterogeneity and assess the relationship between NLR and several clinical parameters. Sensitivity analysis and publication bias were also assessed. RESULTS: Thirteen studies involving 826 PCOS patients and 780 healthy controls were eligible for the present meta-analysis. Generally, NLR significantly increased in PCOS women versus healthy women (SMD = 0.81, 95% CI = 0.30-1.33, P = .002). NLR disparity was subsequently investigated in obese and non-obese cohorts. Obese PCOS women exhibited a higher NLR than obese controls (SMD = 0.56, 95% CI = 0.24-0.87, P = .001), and a similar difference was shown between non-obese PCOS and non-obese controls (SMD = 0.36, 95% CI = 0.02-0.71, P = .038). No significant NLR disparity was observed between obese versus non-obese PCOS women (SMD = 0.50, 95% CI = -0.37 to 1.38, P = .259). Meta-regression analysis revealed that NLR was significantly positively associated with fasting blood glucose (P = .006) and total cholesterol levels (P = .021), but not correlated with body mass index and other parameters in PCOS patients. Sensitivity analysis indicated that no individual study significantly affected the overall pooled result, and no publishing bias was observed. CONCLUSION: PCOS women typically present with an increased NLR. Such an increase is independent of obesity and may be associated with glycolipid metabolic disorders.


Assuntos
Síndrome do Ovário Policístico , Biomarcadores , Glicemia , Colesterol , Feminino , Glicolipídeos , Humanos , Linfócitos , Neutrófilos , Obesidade/complicações , Síndrome do Ovário Policístico/complicações
13.
Oncogene ; 41(44): 4877-4892, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36192478

RESUMO

PTEN is frequently mutated in human cancers, which leads to the excessive activation of PI3K/AKT signaling and thus promotes tumorigenesis and drug resistance. Met1-linked ubiquitination (M1-Ubi) is also involved in cancer progression, but the mechanism is poorly defined. Here we find that HOIP, one important component of linear ubiquitin chain assembly complex (LUBAC), promotes prostate cancer (PCa) progression by enhancing AKT signaling in a PTEN-dependent manner. Mechanistically, PTEN is modified by M1-Ubi at two sites K144 and K197, which significantly inhibits PTEN phosphatase activity and thus accelerates PCa progression. More importantly, we identify that the high-frequency mutants PTENR173H and PTENR173C in PCa patients showed the enhanced level of M1-Ubi, which impairs PTEN function in inhibition of AKT phosphorylation and cell growth. We also find that HOIP depletion sensitizes PCa cells to therapeutic agents BKM120 and Enzalutamide. Furthermore, the clinical data analyses confirm that HOIP is upregulated and positively correlated with AKT activation in PCa patient specimen, which may promote PCa progression and increase the risk of PCa biochemical relapse. Together, our study reveals a key role of PTEN M1-Ubi in regulation of AKT activation and PCa progression, which may propose a new strategy for PCa therapy.


Assuntos
PTEN Fosfo-Hidrolase , Neoplasias da Próstata , Masculino , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Ubiquitinação
14.
Nat Commun ; 13(1): 3907, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798741

RESUMO

Existing knowledge of the role of epigenetic modifiers in pancreas development has exponentially increased. However, the function of TET dioxygenases in pancreatic endocrine specification remains obscure. We set out to tackle this issue using a human embryonic stem cell (hESC) differentiation system, in which TET1/TET2/TET3 triple knockout cells display severe defects in pancreatic ß-cell specification. The integrative whole-genome analysis identifies unique cell-type-specific hypermethylated regions (hyper-DMRs) displaying reduced chromatin activity and remarkable enrichment of FOXA2, a pioneer transcription factor essential for pancreatic endoderm specification. Intriguingly, TET depletion leads to significant changes in FOXA2 binding at the pancreatic progenitor stage, in which gene loci with decreased FOXA2 binding feature low levels of active chromatin modifications and enriches for bHLH motifs. Transduction of full-length TET1 but not the TET1-catalytic-domain in TET-deficient cells effectively rescues ß-cell differentiation accompanied by restoring PAX4 hypomethylation. Taking these findings together with the defective generation of functional ß-cells upon TET1-inactivation, our study unveils an essential role of TET1-dependent demethylation in establishing ß-cell identity. Moreover, we discover a physical interaction between TET1 and FOXA2 in endodermal lineage intermediates, which provides a mechanistic clue regarding the complex crosstalk between TET dioxygenases and pioneer transcription factors in epigenetic regulation during pancreas specification.


Assuntos
Dioxigenases , Fator 3-beta Nuclear de Hepatócito , Oxigenases de Função Mista , Proteínas Proto-Oncogênicas , 5-Metilcitosina/metabolismo , Diferenciação Celular/genética , Cromatina/genética , Montagem e Desmontagem da Cromatina , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Epigênese Genética , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Humanos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
16.
Cell Death Dis ; 13(6): 532, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668069

RESUMO

PTENα and PTENß (PTENα/ß), two long translational variants of phosphatase and tensin homolog on chromosome 10 (PTEN), exert distinct roles from canonical PTEN, including promoting carcinogenesis and accelerating immune-resistant cancer progression. However, their roles in carcinogenesis remain greatly unknown. Herein, we report that, after secreting into the extracellular space, PTENα/ß proteins are efficiently cleaved into a short N-terminal and a long C-terminal fragment by the proprotein convertase Furin at a polyarginine stretch in their N-terminal extensions. Although secreted PTENα/ß and their cleaved fragment cannot enter cells, treatment of the purified C-terminal fragment but not cleavage-resistant mutants of PTENα exerts a tumor-suppressive role in vivo. As a result, overexpression of cleavage-resistant PTENα mutants manifest a tumor-promoting role more profound than that of wild-type PTENα. In line with these, the C-terminal fragment is significantly downregulated in liver cancer tissues compared to paired normal tissues, which is consistent with the downregulated expression of Furin. Collectively, we show that extracellular PTENα/ß present opposite effects on carcinogenesis from intracellular PTENα/ß, and propose that the tumor-suppressive C-terminal fragment of PTENα/ß might be used as exogenous agent to treat cancer.


Assuntos
Furina , Neoplasias Hepáticas , Carcinogênese , Furina/genética , Humanos , Pró-Proteína Convertases
17.
Theranostics ; 12(7): 3237-3250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547757

RESUMO

Background: Impaired mitochondrial function contributes to non-alcoholic steatohepatitis (NASH). Acylglycerol kinase (AGK) is a subunit of the translocase of the mitochondrial inner membrane 22 (TIM22) protein import complex. AGK mutation is the leading cause of Sengers syndrome, characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, lactic acidosis, and liver dysfunction. The potential roles and mechanisms of AGK in NASH are not yet elucidated. Methods: Hepatic-specific AGK-deficient mice and AGK G126E mutation (AGK kinase activity arrest) mice were on a choline-deficient and high-fat diet (CDAHFD) and a methionine choline-deficient diet (MCD). The mitochondrial function and the molecular mechanisms underlying AGK were investigated in the pathogenesis of NASH. Results: The levels of AGK were significantly downregulated in human NASH liver samples. AGK deficiency led to severe liver damage and lipid accumulation in mice. Aged mice lacking hepatocyte AGK spontaneously developed NASH. AGK G126E mutation did not affect the structure and function of hepatocytes. AGK deficiency, but not AGK G126E mice, aggravated CDAHFD- and MCD-induced NASH symptoms. AGK deficiency-induced liver damage could be attributed to hepatic mitochondrial dysfunction. The mechanism revealed that AGK interacts with mitochondrial respiratory chain complex I subunits, NDUFS2 and NDUFA10, and regulates mitochondrial fatty acid metabolism. Moreover, the AGK DGK domain might directly interact with NDUFS2 and NDUFA10 to maintain the hepatic mitochondrial respiratory chain complex I function. Conclusions: The current study revealed the critical roles of AGK in NASH. AGK interacts with mitochondrial respiratory chain complex I to maintain mitochondrial integrity via the kinase-independent pathway.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Colina , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Fígado/metabolismo , Metionina , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , NADH Desidrogenase/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
18.
Cell Death Differ ; 29(8): 1569-1581, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35140358

RESUMO

Linker histone H1 proteins contain many variants in mammalian and can stabilize the condensed state of chromatin by binding to nucleosomes and promoting a more inaccessible structure of DNA. However, it is poorly understood how the binding of histone H1s to chromatin DNA is regulated. Screened as one of a collection of epithelial cells-enriched long non-coding RNAs (lncRNAs), here we found that small nucleolar RNA host gene 8 (SNHG8) is a chromatin-localized lncRNA and presents strong interaction and phase separation with histone H1 variants. Moreover, SNHG8 presents stronger ability to bind H1s than linker DNA, and outcompetes linker DNA for H1 binding. Consequently, loss of SNHG8 increases the amount of H1s that bind to chromatin, promotes chromatin condensation, and induces an epithelial differentiation-associated gene expression pattern. Collectively, our results propose that the highly abundant SNHG8 in epithelial cells keeps histone H1 variants out of nucleosome and its loss contributes to epithelial cell differentiation.


Assuntos
Histonas , RNA Longo não Codificante , Animais , Cromatina , DNA/metabolismo , Células Epiteliais/metabolismo , Histonas/genética , Histonas/metabolismo , Mamíferos/metabolismo , Nucleossomos , RNA Longo não Codificante/genética
19.
J Int Med Res ; 50(1): 3000605211067316, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34986678

RESUMO

OBJECTIVE: This meta-analysis evaluated the association between the mean platelet volume (MPV) and polycystic ovary syndrome (PCOS). METHODS: A systematic literature search using PubMed, EMBASE, and Web of Science databases until June 2021 was conducted. Pooled standardized mean differences (SMD) and 95% confidence intervals (CI) were determined using a random effects model. RESULTS: Ten studies involving 866 women with PCOS and 548 age- and body mass index-matched women without PCOS were included. The MPV was significantly increased in women with PCOS compared with non-PCOS women (SMD = 0.43, 95% CI = 0.13-0.72). Subgroup analyses showed that this trend was consistent in cross-sectional studies (SMD = 0.44, 95% CI = 0.03-0.86) and in Turkish women (SMD = 0.46, 95% CI = 0.13-0.79). Meta-regression analysis revealed a marginally positive correlation between the MPV and the homoeostasis model assessment of insulin resistance in women with PCOS. The sensitivity analysis showed that the effect estimate was robust and stable, and publication bias was not evidenced in the pooled analysis. CONCLUSIONS: This meta-analysis revealed that women with PCOS have a significantly increased MPV than women without PCOS, which is probably associated with insulin resistance.INPLASY registration number: INPLASY2021100021.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Índice de Massa Corporal , Estudos Transversais , Feminino , Humanos , Volume Plaquetário Médio
20.
Medicine (Baltimore) ; 100(50): e28234, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34918687

RESUMO

BACKGROUND: The relationship between platelet-associated parameters and psoriasis has been controversial. The purpose of our meta-analysis was to assess whether platelet count, platelet-to-lymphocyte ratio (PLR), mean platelet volume (MPV), and platelet distribution width (PDW) are associated with psoriasis. METHODS: We performed a thorough documentation retrieval via PubMed, EMBASE, and Web of Science until June 2021. Pooled standardized mean differences (SMDs) and 95% confidence intervals (CIs) were calculated using a random-effects model. RESULTS: Overall, 22 studies involving 1749 patients with psoriasis and 1538 healthy controls were selected for the meta-analysis. The outcomes showed that platelet count presented non-significant differences between psoriatic patients and normal individuals (SMD = 0.12, 95% CI =  -0.07 to 0.32, P = .210), while PLR (SMD = 0.28, 95% CI = 0.03-0.53, P = .031), MPV (SMD = 0.55, 95% CI = 0.30-0.79, P < .001), and PDW (SMD = 0.29, 95% CI = 0.03-0.55, P = .027) were remarkably greater in the psoriatic patients than in the healthy individuals, and similar results were found in subgroup analyses. The analytical results of susceptibility revealed that the outcomes were robust, and no evidence of substantial publication bias was identified. CONCLUSION: Patients with psoriasis present significantly higher PLR, MPV, and PDW than healthy individuals, suggesting that psoriasis is accompanied by low-grade systemic inflammation and platelet activation.


Assuntos
Nível de Saúde , Volume Plaquetário Médio , Contagem de Plaquetas , Psoríase/sangue , Biomarcadores/sangue , Plaquetas , Humanos , Contagem de Linfócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA