Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(16): 6439-6446, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37053452

RESUMO

A heterobimetallic coordination polymer [Au4(dppmt)4(AgCl)2]n (1) incorporating an in situ generated P-S ligand (dppmtH) was synthesized from the solvothermal reaction of Au(tht)Cl, AgCl, and dpppyatc in CH3CN/CH2Cl2 (dppmtH = (diphenylphosphino)methanethiol, tht = tetrahydrothiophene, dpppyatc = N,N-bis((diphenylphosphaneyl)methyl)-N-(pyridin-2-yl)-amino-thiocarbamide). The structure of 1 contains a one-dimensional helical Au-Au chain in which the unique [Au4Ag2S2] cluster units are connected by [Au2(dppmt)2] dimers. Upon excitation at 343 nm, 1 exhibited cyan (495 nm) phosphorescent emission at quantum yield (QY) = 22.3% and τ = 0.78 µs (λex = 375 nm). Coordination polymer 1 exhibited a rapid, selective, reversible, and visible vapor-chromic response on exposure to methanol (MeOH) vapor with its emission shifting to a more intense green (530 nm, λex = 388 nm) with QY = 46.8% and τ = 1.24 µs (λex = 375 nm). A polymethylmethacrylate film containing 1 served as a reversible chemical sensor for the sensitive detection of MeOH in air.

2.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499007

RESUMO

Fragrance is an important characteristic of rose flowers and is largely determined by the terpenes. Rose has a unique NUDX1 (NUDIX HYDROLASES 1)-dependent monoterpene geraniol biosynthesis pathway, but little is known about its transcriptional regulation. In this study, we characterized two China rose (Rosa chinensis) materials from the 'Old Blush' variety with contrasting aromas. We profiled the volatile metabolome of both materials, and the results revealed that geraniol was the main component that distinguishes the aroma of these two materials. We performed a comparative transcriptome analysis of the two rose materials, from which we identified the hydrolase RcNUDX1 as a key factor affecting geraniol content, as well as 17 transcription factor genes co-expressed with RcNUDX1. We also determined that the transcription factor RcWRKY70 binds to four W-box motifs in the promoter of RcNUDX1, repressing RcNUDX1 expression, based on yeast one-hybrid and transient dual-luciferase assays. These results provide important information concerning the transcriptional regulatory framework underlying the control of geraniol production in rose.


Assuntos
Rosa , Rosa/genética , Rosa/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Flores/genética , Flores/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
3.
PeerJ ; 9: e10785, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604183

RESUMO

Rosaceae is an important family containing some of the highly evolved fruit and ornamental plants. Abiotic stress responses play key roles in the seasonal growth and development of plants. However, the molecular basis of stress responses remains largely unknown in Rosaceae. Abscisic acid (ABA) is a stress hormone involving abiotic stress response pathways. The ABRE-binding factor/ABA-responsive element-binding protein (ABF/AREB) is a subfamily of the basic domain/leucine zipper (bZIP) transcription factor family. It plays an important role in the ABA-mediated signaling pathway. Here, we analyzed the ABF/AREB subfamily genes in nine Rosaceae species. A total of 64 ABF/AREB genes were identified, including 18, 28, and 18 genes in the Rosoideae, Amygdaloideae, and Maloideae traditional subfamilies, respectively. The evolutionary relationship of the ABF/AREB subfamily genes was studied through the phylogenetic analysis, the gene structure and conserved motif composition, Ka/Ks values, and interspecies colinearity. These gene sets were clustered into four groups. In the Prunus ABF/AREB (PmABF) promoters, several cis-elements related to light, hormone, and abiotic stress response were predicted. PmABFs expressed in five different tissues, except PmABF5, which expressed only in buds. In the dormancy stages, PmABF1, 2, 5 and 7 showed differential expression. The expression of PmABF3, 4 and 6 was positively correlated with the ABA concentration. Except for PmABF5, all the PmABFs were sensitive to ABA. Several ABRE elements were contained in the promoters of PmABF1, 3, 6, 7. Based on the findings of our study, we speculate that PmABFs may play a role in flower bud dormancy in P. mume.

4.
J Colloid Interface Sci ; 582(Pt B): 874-882, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32916579

RESUMO

Pseudocapacitive lithium storage is an effective way to promote the improvement of electrochemical performance for lithium ion batteries. However, the intrinsically sluggish lithium ionic diffusion and the low electronic conductivity of TiO2 limit its capability of pseudocapacitive behavior with fast surface redox reaction. In this work, TiO2 quantum dots confined in 3-dimensional carbon framework have been synthesized by a facile process of reverse microemulsion method combined with heat treatment. The obtained composites effectively combine electrochemical redox with surface pseudocapacitive, showing excellent electrochemical properties. An ultra-high discharge capacity of 370.5 mAh/g can be retained after 200 cycles at a current density of 0.1 A/g. Ultra-long life extends to 10,000 cycles with an average capacity loss of as low as 0.00314% per cycle can be obtained at a high current density of 5.0 A/g, due to the high pesudocapacitance contribution of fast surface redox reaction. Furthermore, the practice application of the obtained electrode is also investigated in a full cell with LiCoO2 as the cathode and a high capacity retention of 93.5% is maintained after 100 cycles at the current density of 0.1 A/g.

5.
Front Pharmacol ; 11: 568006, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519432

RESUMO

Purpose: N 6-methyladenosine (m6A) mRNA methylation is affected by dietary factors and associated with lipid metabolism; however, whether the regulatory role of resveratrol in lipid metabolism is involved in m6A mRNA methylation remains unknown. Here, the objective of this study was to investigate the effect of resveratrol on hepatic lipid metabolism and m6A RNA methylation in the liver of mice. Methods: A total of 24 male mice were randomly allocated to LFD (low-fat diet), LFDR (low-fat diet + resveratrol), HFD (high-fat diet), and HFDR (high-fat diet + resveratrol) groups for 12 weeks (n = 6/group). Final body weight of mice was measured before sacrificing. Perirhemtric fat, abdominal and epididymal fat, liver tissues, and serum were collected at sacrifice and analyzed. Briefly, mice phenotype, lipid metabolic index, and m6A modification in the liver were assessed. Results: Compared to the HFD group, dietary resveratrol supplementation reduced the body weight and relative abdominal, epididymal, and perirhemtric fat weight in high-fat-exposed mice; however, resveratrol significantly increased average daily feed intake in mice given HFD. The amounts of serum low-density lipoprotein cholesterol (LDL), liver total cholesterol (TC), and triacylglycerol (TAG) were significantly decreased by resveratrol supplementation. In addition, resveratrol significantly enhanced the levels of peroxisome proliferator-activated receptor alpha (PPARα), peroxisome proliferator-activated receptor beta/delta (PPARß/δ), cytochrome P450, family 4, subfamily a, polypeptide 10/14 (CYP4A10/14), acyl-CoA oxidase 1 (ACOX1), and fatty acid-binding protein 4 (FABP4) mRNA and inhibited acyl-CoA carboxylase (ACC) mRNA levels in the liver. Furthermore, the resveratrol in HFD increased the transcript levels of methyltransferase like 3 (METTL3), alkB homolog 5 (ALKBH5), fat mass and obesity associated protein (FTO), and YTH domain family 2 (YTHDF2), whereas it decreased the level of YTH domain family 3 (YTHDF3) and m6A abundance in mice liver. Conclusion: The beneficial effect of resveratrol on lipid metabolism disorder under HFD may be due to decrease of m6A RNA methylation and increase of PPARα mRNA, providing mechanistic insights into the function of resveratrol in alleviating the disturbance of lipid metabolism in mice.

6.
Genes (Basel) ; 10(10)2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635348

RESUMO

Rosa chinensis, an important ancestor species of Rosa hybrida, the most popular ornamental plant species worldwide, produces flowers with diverse colors and fragrances. The R2R3-MYB transcription factor family controls a wide variety of plant-specific metabolic processes, especially phenylpropanoid metabolism. Despite their importance for the ornamental value of flowers, the evolution of R2R3-MYB genes in plants has not been comprehensively characterized. In this study, 121 predicted R2R3-MYB gene sequences were identified in the rose genome. Additionally, a phylogenomic synteny network (synnet) was applied for the R2R3-MYB gene families in 35 complete plant genomes. We also analyzed the R2R3-MYB genes regarding their genomic locations, Ka/Ks ratio, encoded conserved motifs, and spatiotemporal expression. Our results indicated that R2R3-MYBs have multiple synteny clusters. The RcMYB114a gene was included in the Rosaceae-specific Cluster 54, with independent evolutionary patterns. On the basis of these results and an analysis of RcMYB114a-overexpressing tobacco leaf samples, we predicted that RcMYB114a functions in the phenylpropanoid pathway. We clarified the relationship between R2R3-MYB gene evolution and function from a new perspective. Our study data may be relevant for elucidating the regulation of floral metabolism in roses at the transcript level.


Assuntos
Evolução Molecular , Genoma de Planta , Proteínas de Plantas/genética , Rosa/genética , Fatores de Transcrição/genética , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Rosa/classificação , Sintenia , Fatores de Transcrição/metabolismo
7.
Front Plant Sci ; 10: 1098, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552079

RESUMO

Petal expansion is the main process by which flower opening occurs in roses (Rosa chinensis). Although the regulation of leaf expansion has been extensively studied, little is known about the mechanisms controlling petal expansion. The regulation of leaf dorsoventral (adaxial-abaxial) polarity is important for blade expansion and morphogenesis, but the mechanisms involved adaxial-abaxial regulation in petals are unknown. We found that auxin, a key hormonal regulator of leaf adaxial-abaxial patterning, is unevenly distributed in rose petals. The transcriptomes of the adaxial and abaxial petal tissues were sequenced at three developmental stages during flower opening. Genes that were differentially expressed between the two tissues were filtered for those known to be involved in petal expansion and phytohormone biosynthesis, transport, and signaling, revealing potential roles in petal expansion, especially auxin pathway genes. Using a weighted gene coexpression network analysis (WGCNA), we identified two gene modules that may involve in adaxial-abaxial regulation, 21 and five hub genes have been found respectively. The qRT-PCR validation results were consistent with the RNA-seq data. Based on these findings, we propose a simple network of adaxial-abaxial-related genes that regulates petal expansion in R. chinensis "Old Blush." For the first time, we report the adaxial-abaxial transcriptional changes that occur during petal expansion, providing a reference for the study of the regulation of polarity in plant development.

8.
Int J Mol Sci ; 20(14)2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31330828

RESUMO

Rosa chinensis is one of the most popular flower plants worldwide. The recurrent flowering trait greatly enhances the ornamental value of roses, and is the result of the constant formation of new flower buds. Flower bud differentiation has always been a major topic of interest among researchers. The APETALA1 (AP1) MADS-box (Mcm1, Agamous, Deficiens and SRF) transcription factor-encoding gene is important for the formation of the floral meristem and floral organs. However, research on the rose AP1 gene has been limited. Thus, we isolated AP1 from Rosa chinensis 'Old Blush'. An expression analysis revealed that RcAP1 was not expressed before the floral primordia formation stage in flower buds. The overexpression of RcAP1 in Arabidopsis thaliana resulted in an early-flowering phenotype. Additionally, the virus-induced down-regulation of RcAP1 expression delayed flowering in 'Old Blush'. Moreover, RcAP1 was specifically expressed in the sepals of floral organs, while its expression was down-regulated in abnormal sepals and leaf-like organs. These observations suggest that RcAP1 may contribute to rose bud differentiation as well as floral organ morphogenesis, especially the sepals. These results may help for further characterization of the regulatory mechanisms of the recurrent flowering trait in rose.


Assuntos
Flores/embriologia , Flores/metabolismo , Proteínas de Plantas/metabolismo , Rosa/embriologia , Rosa/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Morfogênese/genética , Morfogênese/fisiologia , Proteínas de Plantas/genética
9.
Cell Rep ; 25(7): 1816-1828.e4, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428350

RESUMO

Transcriptional regulation of circadian rhythms is essential for lipid metabolic homeostasis, disruptions of which can lead to metabolic diseases. Whether N6-methyladenosine (m6A) mRNA methylation impacts circadian regulation of lipid metabolism is unclear. Here, we show m6A mRNA methylation oscillations in murine liver depend upon a functional circadian clock. Hepatic deletion of Bmal1 increases m6A mRNA methylation, particularly of PPaRα. Inhibition of m6A methylation via knockdown of m6A methyltransferase METTL3 decreases PPaRα m6A abundance and increases PPaRα mRNA lifetime and expression, reducing lipid accumulation in cells in vitro. Mechanistically, YTHDF2 binds to PPaRα to mediate its mRNA stability to regulate lipid metabolism. Induction of reactive oxygen species both in vitro and in vivo increases PPaRα transcript m6A levels, revealing a possible mechanism for circadian disruption on m6A mRNA methylation. These data show that m6A RNA methylation is important for circadian regulation of downstream genes and lipid metabolism, impacting metabolic outcomes.


Assuntos
Adenosina/análogos & derivados , Relógios Circadianos/genética , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Adenosina/metabolismo , Animais , Proliferação de Células , Deleção de Genes , Células Hep G2 , Humanos , Metilação , Metiltransferases/metabolismo , Camundongos Knockout , Modelos Biológicos , PPAR alfa/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
10.
PLoS One ; 13(6): e0198604, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29902206

RESUMO

This study was conducted to investigate effect of N6-methyladenosine (m6A) RNA methylation on Heat shock proteins (HSPs) and dissect the profile of HSP RNA methylation. The results showed that m6A methyltransferases METTL3 mRNA was decreased in responses to heat shock stress in HepG2 cells, but m6A-specific binding protein YTHDF2 mRNA was upregulated in a manner similar to HSP70 induction. Immunofluorescence staining showed that the majority of YTHDF2 was present in the cytosol, however, nearly all YTHDF2 translocated from the cytosol into the nucleus after heat shock. METTL3 knockdown significantly changed HSP70, HSP60, and HSP27 mRNA expression in HepG2 cells using siRNA, however, mRNA lifetime was not impacted. Silence of YTHDF2 using siRNA did not change expression of HSP70, but significantly increased HSP90, HSP60, and HSPB1 mRNA expression. In addition, m6A-seq revealed that HSP m6A methylation peaks are mainly enriched on exons and around stop codons, and shows a unique distribution profile in the 5'UTR and 3'UTR. Knockdown of METTL3 changed the methylation patterns of HSPs transcript. In conclusion, m6A RNA methylation regulates HSP gene expression. Differential expression of HSPs modulated by m6A may depend on the m6A site and abundance of the target gene. This finding provides insights into new regulatory mechanisms of HSPs in normal and stress situations.


Assuntos
Adenosina/análogos & derivados , Proteínas de Choque Térmico/metabolismo , Adenosina/metabolismo , Expressão Gênica/fisiologia , Regulação da Expressão Gênica/fisiologia , Resposta ao Choque Térmico/fisiologia , Células Hep G2 , Humanos , Metilação , RNA Mensageiro/metabolismo
11.
Lipids ; 53(1): 53-63, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488640

RESUMO

N6 -methyladenosine (m6 A) regulates gene expression and affects cellular metabolism. In this study, we checked whether the regulation of lipid metabolism by curcumin is associated with m6 A RNA methylation. We investigated the effects of dietary curcumin supplementation on lipopolysaccharide (LPS)-induced liver injury and lipid metabolism disorder, and on m6 A RNA methylation in weaned piglets. A total of 24 Duroc × Large White × Landrace piglets were randomly assigned to control, LPS, and CurL (LPS challenge and 200 mg/kg dietary curcumin) groups (n = 8/group). The results showed that curcumin reduced the increase in relative liver weight as well as the concentrations of aspartate aminotransferase and lactate dehydrogenase induced by LPS injection in the plasma and liver of weaning piglets (p < 0.05). The amounts of total cholesterol and triacylglycerols were decreased by curcumin compared to that by the LPS injection (p < 0.05). Additionally, curcumin reduced the expression of Bcl-2 and Bax mRNA, whereas it increased the p53 mRNA level in the liver (p < 0.05). Curcumin inhibited the enhancement of SREBP-1c and SCD-1 mRNA levels induced by LPS in the liver. Notably, dietary curcumin affected the expression of METTL3, METTL14, ALKBH5, FTO, and YTHDF2 mRNA, and increased the abundance of m6 A in the liver of piglets. In conclusion, the protective effect of curcumin in LPS-induced liver injury and hepatic lipid metabolism disruption might be due to the increase in m6 A RNA methylation. Our study provides mechanistic insights into the effect of curcumin in protecting against hepatic injury during inflammation and metabolic diseases.


Assuntos
Curcumina/administração & dosagem , Inflamação/dietoterapia , Transtornos do Metabolismo dos Lipídeos/dietoterapia , Fígado/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/veterinária , Metabolismo dos Lipídeos/efeitos dos fármacos , Transtornos do Metabolismo dos Lipídeos/induzido quimicamente , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/veterinária , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , Fígado/patologia , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Estearoil-CoA Dessaturase/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Suínos , Triglicerídeos/metabolismo , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA