Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Front Microbiol ; 14: 1298026, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111642

RESUMO

The COVID-19 pandemic has resulted in the implementation of strict mitigation measures that have impacted the transmission dynamics of human respiratory syncytial virus (HRSV). The measures also have the potential to influence the evolutionary patterns of the virus. In this study, we conducted a comprehensive analysis comparing genomic variations and evolving characteristics of its neutralizing antigens, specifically F and G proteins, before and during the COVID-19 pandemic. Our findings showed that both HRSV A and B exhibited an overall chronological evolutionary pattern. For the sequences obtained during the pandemic period (2019-2022), we observed that the HRSV A distributed in A23 genotype, but formed into three subclusters; whereas the HRSV B sequences were relatively concentrated within genotype B6. Additionally, multiple positively selected sites were detected on F and G proteins but none were located at neutralizing antigenic sites of the F protein. Notably, amino acids within antigenic site III, IV, and V of F protein remained strictly conserved, while some substitutions occurred over time on antigenic site Ø, I, II and VIII; substitution S389P on antigenic site I of HRSV B occurred during the pandemic period with nearly 50% frequency. However, further analysis revealed no substitutions have altered the structural conformations of the antigenic sites, the vial antigenicity has not been changed. We inferred that the intensive public health interventions during the COVID-19 pandemic did not affect the evolutionary mode of HRSV.

2.
Viruses ; 15(2)2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36851535

RESUMO

The Omicron variant is currently ravaging the world, raising serious concern globally. Monitoring genomic variations and determining their influence on biological features are critical for tracing its ongoing transmission and facilitating effective measures. Based on large-scale sequences from different continents, this study found that: (i) The genetic diversity of Omicron is much lower than that of the Delta variant. Still, eight deletions (Del 1-8) and 1 insertion, as well as 130 SNPs, were detected on the Omicron genomes, with two deletions (Del 3 and 4) and 38 SNPs commonly detected on all continents and exhibiting high-occurring frequencies. (ii) Four groups of tightly linked SNPs (linkage I-IV) were detected, among which linkage I, containing 38 SNPs, with 6 located in the RBD, increased its occurring frequency remarkably over time. (iii) The third codons of the Omicron shouldered the most mutation pressures, while the second codons presented the least flexibility. (iv) Four major mutants with amino acid substitutions in the RBD were detected, and further structural analysis suggested that the substitutions did not alter the viral receptor binding ability greatly. It was inferred that though the Omicron genome harbored great changes in antigenicity and remarkable ability to evade immunity, it was immune-pressure selected. This study tracked mutational signatures of Omicron variant and the potential biological significance of the SNPs, and the linkages await further functional verification.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Mutação , Substituição de Aminoácidos
3.
Front Microbiol ; 13: 1041338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466668

RESUMO

Human respiratory syncytial virus (RSV) is a ubiquitous pediatric pathogen causing serious lower respiratory tract disease worldwide. No licensed vaccine is currently available. In this work, the coding gene for mDS-Dav1, the full-length and prefusion conformation RSV fusion glycoprotein (F), was designed by introducing the stabilized prefusion F (preF) mutations from DS-Cav1 into the encoding gene of wild-type RSV (wtRSV) F protein. The recombinant adenovirus encoding mDS-Cav1, rChAd63-mDS-Cav1, was constructed based on serotype 63 chimpanzee adenovirus vector and characterized in vitro. After immunizing mice via intranasal route, the rChAd63-mDS-Cav1 induced enhanced neutralizing antibody and F-specific CD8+ T cell responses as well as good immune protection against RSV challenge with the absence of enhanced RSV disease (ERD) in BALB/c mice. The results indicate that rChAd63-mDS-Cav1 is a promising mucosal vaccine candidate against RSV infection and warrants further development.

4.
China CDC Wkly ; 4(2): 27-30, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35586517

RESUMO

GII.2[P16] noroviruses (NoV) reemerged and rapidly became the main epidemic strain in acute gastroenteritis (AGE) outbreaks in Asian countries since 2016. The current GII.2 [P16] NoV showed the same antigenicity to the ones before 2016, but several unique amino acid substitutions existed in the RNA dependent RNA polymerase (RdRp) and other non-structural proteins, and the viral load of the current GII.2[P16] NoV was higher than those of other genotypes, it was estimated that the viral replication ability may have improved. However, other genotypes, such as GII.1 and GII.3, also had recombination with the novel RdRp, were not prevalent in AGE-outbreaks; thus, it was inferred that the capsid proteins also played an important role in the enhanced replication process. The viral infection could also be affected by other factors, such as the population genetic background, the climate and environment, and people's lifestyles. Continued surveillance on genetic diversity and evolutionary pattern for the GII.2[P16] NoV is necessary.

5.
Virus Evol ; 8(1): veac030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450165

RESUMO

GII.2[P16] and GII.4 Sydney [P16] are currently the two predominant norovirus genotypes. This study sought to clarify their evolutionary patterns by analyzing the major capsid VP1 and RNA-dependent RNA polymerase (RdRp) genes. Sequence diversities were analyzed at both nucleotide and amino acid levels. Selective pressures were evaluated with the Hyphy package in different models. Phylogenetic trees were constructed by the maximum likelihood method from full VP1 sequences, and evolutionary rates were estimated by the Bayesian Markov Chain Monte Carlo approach. The results showed that (1) several groups of tightly linked mutations between the RdRp and VP1 genes were detected in the GII.2[P16] and GII.4[P16] noroviruses, and most of these mutations were synonymous, which may lead to a better viral fitness to the host; (2) although the pattern of having new GII.4 variants every 2-4 years has been broken, both the pre- and the post-2015 Sydney VP1 had comparable evolutionary rates to previously epidemic GII.4 variants, and half of the major antigenic sites on GII.4 Sydney had residue substitutions and several caused obvious changes in the carbohydrate-binding surface that may potentially alter the property of the virus; and (3) GII.4 Sydney variants during 2018-21 showed geographical specificity in East Asia, South Asia, and North America; the antigenic sites of GII.2 are strictly conserved, but the GII.2 VP1 chronologically evolved into nine different sublineages over time, with sublineage IX being the most prevalent one since 2018. This study suggested that both VP1 and RdRp of the GII.2[P16] and GII.4 Sydney [P16] noroviruses exhibited different evolutionary directions. GII.4[P16] is likely to generate potential novel epidemic variants by accumulating mutations in the P2 domain, similar to previously epidemic GII.4 variants, while GII.2[P16] has conserved predicted antigenicity and may evolve by changing the properties of nonstructural proteins, such as polymerase replicational fidelity and efficiency. This study expands the understanding of the evolutionary dynamics of GII.2[P16] and GII.4[P16] noroviruses and may predict the emergence of new variants.

6.
Front Microbiol ; 12: 750725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691002

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been emerging and circulating globally since the start of the COVID-19 pandemic, of which B.1.617 lineage that was first reported in India at the end of 2020, soon became predominant. Tracing genomic variations and understanding their impact on the viral properties are the foundations for the vaccine and drug development and for the mitigation measures to be taken or lifted. In this study, 1,051 near-complete genomes and 1,559 spike (S) sequences belonging to the B.1.617 were analyzed. A genome-wide spread of single nucleotide polymorphisms (SNPs) was identified. Of the high frequency mutations identified, 61% (11/18) involved structural proteins, despite two third of the viral genome encoding nonstructural proteins. There were 22 positive selection sites, mostly distributed across the S protein, of which 16 were led by non-C to U transition and should be of a special attention. Haplotype network revealed that a large number of daughter haplotypes were continually derived throughout the pandemic, of which H177, H181 H219 and H286 from the ancestor haplotype H176 of B.1.617.2 were widely prevalent. Besides the well known substitutions of L452R, P681R and deletions of E156 and F157, as well as the potential biological significance, structural analysis in this study still indicated that new amino acid changes in B.1.617, such as E484Q and N501Y, had reshaped the viral bonding network, and increasingly sequenced N501Y mutant with a potential enhanced binding ability was detected in many other countries in the follow-up monitoring. Although we can't conclude the properties of all the mutants including N501Y thoroughly, it merits focusing on their spread epidemically and biologically.

7.
Sci Rep ; 11(1): 12941, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155268

RESUMO

Human respiratory syncytial viruses (RSVs) are classified into two major groups (A and B) based on antigenic differences in the G glycoprotein. To investigate circulating characteristics and phylodynamic history of RSV, we analyzed the genetic variability and evolutionary pattern of RSVs from 1977 to 2019 in this study. The results revealed that there was no recombination event of intergroup. Single nucleotide polymorphisms (SNPs) were observed through the genome with the highest occurrence rate in the G gene. Five and six sites in G protein of RSV-A and RSV-B, respectively, were further identified with a strong positive selection. The mean evolutionary rates for RSV-A and -B were estimated to be 1.48 × 10-3 and 1.92 × 10-3 nucleotide substitutions/site/year, respectively. The Bayesian skyline plot showed a constant population size of RSV-A and a sharp expansion of population size of RSV-B since 2005, and an obvious decrease 5 years later, then became stable again. The total population size of RSVs showed a similar tendency to that of RSV-B. Time-scaled phylogeny suggested a temporal specificity of the RSV-genotypes. Monitoring nucleotide changes and analyzing evolution pattern for RSVs could give valuable insights for vaccine and therapy strategies against RSV infection.


Assuntos
Evolução Molecular , Variação Genética , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Teorema de Bayes , Genes Virais , Genótipo , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único , RNA Viral , Recombinação Genética , Seleção Genética
8.
Virol Sin ; 36(4): 706-720, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33559831

RESUMO

Human respiratory syncytial virus (RSV) infection is the leading cause of lower respiratory tract illness (LRTI), and no vaccine against LRTI has proven to be safe and effective in infants. Our study assessed attenuated recombinant RSVs as vaccine candidates to prevent RSV infection in mice. The constructed recombinant plasmids harbored (5' to 3') a T7 promoter, hammerhead ribozyme, RSV Long strain antigenomic cDNA with cold-passaged (cp) mutations or cp combined with temperature-sensitive attenuated mutations from the A2 strain (A2cpts) or further combined with SH gene deletion (A2cptsΔSH), HDV ribozyme (δ), and a T7 terminator. These vectors were subsequently co-transfected with four helper plasmids encoding N, P, L, and M2-1 viral proteins into BHK/T7-9 cells, and the recovered viruses were then passaged in Vero cells. The rescued recombinant RSVs (rRSVs) were named rRSV-Long/A2cp, rRSV-Long/A2cpts, and rRSV-Long/A2cptsΔSH, respectively, and stably passaged in vitro, without reversion to wild type (wt) at sites containing introduced mutations or deletion. Although rRSV-Long/A2cpts and rRSV-Long/A2cptsΔSH displayed  temperature-sensitive (ts) phenotype in vitro and in vivo, all rRSVs were significantly attenuated in vivo. Furthermore, BALB/c mice immunized with rRSVs produced Th1-biased immune response, resisted wtRSV infection, and were free from enhanced respiratory disease. We showed that the combination of ΔSH with attenuation (att) mutations of cpts contributed to improving att phenotype, efficacy, and gene stability of rRSV. By successfully introducing att mutations and SH gene deletion into the RSV Long parent and producing three rRSV strains, we have laid an important foundation for the development of RSV live attenuated vaccines.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Animais , Chlorocebus aethiops , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sincicial Respiratório Humano/genética , Vacinas Atenuadas/genética , Células Vero , Replicação Viral
9.
Virus Res ; 288: 198138, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32827625

RESUMO

Human astroviruses (HAstVs) were first identified in 1975 and can be classified into three clades: classic HAstVs (HAstV 1-8), MLB (MLB1-3) and VA (VA1-5), with MLB and VA were newly identified. Recombination and a high mutation rate make HAstV as one of the rapidly evolving infectious agents. This study reported a novel identified recombinant human astrovirus (Y/1-CHN) and its long existence in two immunocompromised patients with diarrhea following allogeneic hematopoietic stem cell transplantation (allo-HSCT). The identified Yu/1-CHN genome contains 6801 base pairs encoding three open reading frames, with ORF1a best hit to the HAstV1 (Pune strain, 97 % nucleotide identity), while ORF1b and ORF2 best hit to HAstV-5 (DL30 strain, 99 % nucleotide identity). Possible recombination breakpoint was predicted to be located in the boundary of ORF1a and ORF1b. Different quasispecies were found in the host, and the dN/dS ratios of the S and P domains were determined to be 1.189 and 1.444, respectively, suggesting a positive selection existed. Fecal samples collected in different clinical phases from the two patients were all positive for Yu/1-CHN, suggesting a long existence of the virus in the host. It was indicated that immunocompromised patients may a reservoir for astrovirus, their excreta should be monitored even after discharge from hospital.


Assuntos
Infecções por Astroviridae/virologia , Genoma Viral , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Mamastrovirus/genética , Mamastrovirus/isolamento & purificação , Quase-Espécies/genética , Reservatórios de Doenças/virologia , Fezes/virologia , Variação Genética , Humanos , Hospedeiro Imunocomprometido , Mamastrovirus/classificação , Filogenia
10.
Front Microbiol ; 11: 375, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210947

RESUMO

Human noroviruses (NVs) are the leading cause of acute gastroenteritis outbreaks worldwide. The majority of outbreaks are caused by genogroup II.4 (GII.4), with new variants emerging every 2 to 4 years. Immunocompromised patients are hypothesized to be important reservoirs where new NV variants emerge. Here, we examined intra-host NV variants and assessed immune-driven NV evolution in chronically infected immunocompromised hosts. Three NV GII.4-positive samples were collected from the same patient in different clinical phases following allogeneic hematopoietic stem cell transplantation, and had viral RNA concentrations of 2.46 × 106, 1.47 × 106, and 2.26 × 106 genome copies/mL. The non-synonymous (dN) and synonymous (dS) substitution ratio of the sequences in the partial P domain were >1, indicating strong positive selection in the patient. Both the number and the frequency of the single nucleotide variants increased over time in the patient. Also, the majority of capsid amino acid changes were located at blocking epitopes and histo-blood group antigen (HBGA)-binding sites, and 11 positive selection sites were found in the capsid region, of which 8 sites were presented in blocking epitopes or HBGA-binding sites. Homodimeric P-domain capsid models also suggested a structural change in the epitopes and HBGA-binding sites. The results suggested that novel variants of NV GII.4 with HBGA and antigenic site changes were produced in the immunocompromised patient. Further functional and epidemiological studies are needed to determine whether the new variants are a risk to public health.

11.
Evol Bioinform Online ; 16: 1176934320954870, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35173405

RESUMO

Monitoring the mutation and evolution of the virus is important for tracing its ongoing transmission and facilitating effective vaccine development. A total of 342 complete genomic sequences of SARS-CoV-2 were analyzed in this study. Compared to the reference genome reported in December 2019, 465 mutations were found, among which, 347 occurred in only 1 sequence, while 26 occurred in more than 5 sequences. For these 26 further identified as SNPs, 14 were closely linked and were grouped into 5 profiles. Phylogenetic analysis revealed the sequences formed 2 major groups. Most of the sequences in late period (March and April) constituted the Cluster II, while the sequences before March in this study and the reported S/L and A/B/C types in previous studies were all in Cluster I. The distributions of some mutations were specific geographically or temporally, the potential effect of which on the transmission and pathogenicity of SARS-CoV-2 deserves further evaluation and monitoring. Two mutations were found in the receptor-binding domain (RBD) but outside the receptor-binding motif (RBM), indicating that mutations may only have marginal biological effects but merit further attention. The observed novel sequence divergence is of great significance to the study of the transmission, pathogenicity, and development of an effective vaccine for SARS-CoV-2.

12.
Evol Bioinform Online ; 15: 1176934319864922, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360058

RESUMO

We assessed the quasispecies heterogeneity of a human astrovirus MLB2 (HAstV-MLB2-YJMGK) in immunocompromised patients following hematopoietic stem cell transplantation and performed genetic and evolutionary analyses of HAstV isolates circulating worldwide. The result showed that the virus had diversified variants and a strong positive selection in the patient, indicating that such patients may be a reservoir for astrovirus. The time to the most recent common ancestor of MLB2 and classic HAstVs was around 1800 years, and it has a decline in effective population size of HAstVs in the late 100 years.

13.
Arch Virol ; 164(9): 2385-2388, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31209596

RESUMO

The discovery and analysis of pathogens carried by non-human primates are important for understanding zoonotic infections in humans. We identified a highly divergent astrovirus (AstV) from fecal matter from a rhesus monkey in China, which has been tentatively named "monkey-feces-associated AstV" (MkAstV). The full-length genome of MkAstV was determined to be 7377 nt in length. It exhibits the standard genomic AstV organization of three open reading frames (ORFs) and is most closely related to duck AstV (28%, 49%, and 35% amino acid sequence identity in ORF1a, ORF1b, and ORF2, respectively). Coincidentally, while this report was being prepared, an astrovirus sequence from Hainan black-spectacled toad became available in the GenBank database, showing 95%, 94% and 92% aa sequence identity in ORF1a, ORF1b and ORF2, respectively, to the corresponding ORFs of MkAstV. Phylogenetic analysis of ORF1a, ORF1b, and ORF2 indicated that MkAstV and the amphibian-related astroviruses formed an independent cluster in the genus Avastrovirus. The host of MkAstV remains unknown. Epidemiological and serological studies of this novel virus should be undertaken in primates, including humans.


Assuntos
Astroviridae/isolamento & purificação , Fezes/virologia , Macaca mulatta/virologia , Sequência de Aminoácidos , Animais , Astroviridae/classificação , Astroviridae/genética , China , Genoma Viral , Fases de Leitura Aberta , Filogenia , Alinhamento de Sequência , Proteínas Virais/genética
14.
Arch Virol ; 163(5): 1187-1193, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29387970

RESUMO

To establish an animal model for the newly identified Marmota Himalayana hepatovirus, MHHAV, so as to develop a better understanding of the infection of hepatitis A viruses. Five experimental woodchucks (Marmota monax) were inoculated intravenously with the purified MHHAV from wild woodchuck feces. One animal injected with PBS was defined as a control. Feces and blood were routinely collected. After the animals were subjected to necropsy, different tissues were collected. The presence of viral RNA and negative sense viral RNA was analyzed in all the samples and histopathological and in situ hybridization analysis was performed for the tissues. MHHAV infection caused fever but no severe symptoms or death. Virus was shed in feces beginning at 2 dpi, and MHHAV RNA persisted in feces for ~2 months, with a biphasic increase, and in blood for ~30 days. Viral RNA was detected in all the tissues, with high levels in the liver and spleen. Negative-strand viral RNA was detected only in the liver. Furthermore, the animals showed histological signs of hepatitis at 45 dpi. MHHAV can infect M. monax and is associated with hepatic disease. Therefore, this animal can be used as a model of HAV pathogenesis and to evaluate antiviral and anticancer therapeutics.


Assuntos
Modelos Animais de Doenças , Vírus da Hepatite A/patogenicidade , Hepatite A , Hepatite Viral Animal , Marmota , Animais , Fezes/virologia , Hepatite A/patologia , Hepatite A/fisiopatologia , Hepatite A/virologia , Vírus da Hepatite A/genética , Vírus da Hepatite A/isolamento & purificação , Vírus da Hepatite A/fisiologia , Hepatite Viral Animal/patologia , Hepatite Viral Animal/fisiopatologia , Hepatite Viral Animal/virologia , Fígado/patologia , Fígado/virologia , RNA Viral/isolamento & purificação , Baço/patologia , Baço/virologia
15.
J Gen Virol ; 98(4): 612-623, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28100306

RESUMO

With advances in viral surveillance and next-generation sequencing, highly diverse novel astroviruses (AstVs) and different animal hosts had been discovered in recent years. However, the existence of AstVs in marmots had yet to be shown. Here, we identified two highly divergent strains of AstVs (tentatively named Qinghai Himalayanmarmot AstVs, HHMAstV1 and HHMAstV2), by viral metagenomic analysis in liver tissues isolated from wild Marmota himalayana in China. Overall, 12 of 99 (12.1 %) M. himalayana faecal samples were positive for the presence of genetically diverse AstVs, while only HHMAstV1 and HHMAstV2 were identified in 300 liver samples. The complete genomic sequences of HHMAstV1 and HHMAstV2 were 6681 and 6610 nt in length, respectively, with the typical genomic organization of AstVs. Analysis of the complete ORF 2 sequence showed that these novel AstVs are most closely related to the rabbit AstV, mamastrovirus 23 (with 31.0 and 48.0 % shared amino acid identity, respectively). Phylogenetic analysis of the amino acid sequences of ORF1a, ORF1b and ORF2 indicated that HHMAstV1 and HHMAstV2 form two distinct clusters among the mamastroviruses, and may share a common ancestor with the rabbit-specific mamastrovirus 23. These results suggest that HHMAstV1 and HHMAstV2 are two novel species of the genus Mamastrovirus in the Astroviridae. The remarkable diversity of these novel AstVs will contribute to a greater understanding of the evolution and ecology of AstVs, although additional studies will be needed to understand the clinical significance of these novel AstVs in marmots, as well as in humans.


Assuntos
Infecções por Astroviridae/veterinária , Astroviridae/classificação , Astroviridae/isolamento & purificação , Marmota/virologia , Animais , Astroviridae/genética , Infecções por Astroviridae/virologia , China , Análise por Conglomerados , Fezes/virologia , Ordem dos Genes , Genoma Viral , Fígado/virologia , Metagenômica , Filogenia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Sintenia
16.
Sci Rep ; 6: 28526, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27329349

RESUMO

Recent studies of Enterovirus (EV) in nonhuman primates (NHPs), which could act as a source of future emerging human viral diseases, have boosted interest in the search for novel EVs. Here, a highly divergent strain of EV, tentatively named SEV-gx, was identified by viral metagenomic analysis from stool samples of rhesus macaques in China. In total, 27 of 280 (9.6%) faecal samples from rhesus macaques were positive for SEV-gx. Its complete genomic sequence is 7,367 nucleotide (nt). Genomic analyses showed that it has a standard genomic organisation for EVs, being more closely related to EV-J strains (approximately 54.0%, 43.0-44.1%, 52.3-55.2%, 61.1-62.7% and 64.0% amino acids identity in polyprotein, P1, P2 and P3 and combined 2C/3CD regions, respectively). It was also shown to have genome characteristics typical of EVs. Phylogenetic analysis of P1, 2C and 3CD aa indicated that SEV-gx can be classified as a distinct cluster in the EVs. All of this evidence demonstrates SEV-gx is a novel species (tentatively named EV-K) in the EV genus, which contributes to our understanding of the genetic diversity and evolution of EVs. Further studies are needed to investigate the potential pathogenicity of SEV-gx in NHPs and humans.


Assuntos
Infecções por Enterovirus/veterinária , Enterovirus/classificação , Macaca mulatta/virologia , Doenças dos Macacos/virologia , Animais , China , Enterovirus/genética , Enterovirus/isolamento & purificação , Infecções por Enterovirus/virologia , Evolução Molecular , Fezes/virologia , Variação Genética , Genoma Viral , Humanos , Metagenômica , Conformação de Ácido Nucleico , Filogenia , RNA Viral/química , RNA Viral/genética , Análise de Sequência de RNA , Proteínas Estruturais Virais/genética
17.
Sci Rep ; 6: 22361, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26924426

RESUMO

Hepatitis A virus (HAV) is a hepatotropic picornavirus that causes acute liver disease worldwide. Here, we report on the identification of a novel hepatovirus tentatively named Marmota Himalayana hepatovirus (MHHAV) in wild woodchucks (Marmota Himalayana) in China. The genomic and molecular characterization of MHHAV indicated that it is most closely related genetically to HAV. MHHAV has wide tissue distribution but shows tropism for the liver. The virus is morphologically and structurally similar to HAV. The pattern of its codon usage bias is also consistent with that of HAV. Phylogenetic analysis indicated that MHHAV groups with known HAVs but forms an independent branch, and represents a new species in the genus Hepatovirus within the family Picornaviridae. Antigenic site analysis suggested MHHAV has a new antigenic property to other HAVs. Further evolutionary analysis of MHHAV and primate HAVs led to a most recent common ancestor estimate of 1,000 years ago, while the common ancestor of all HAV-related viruses including phopivirus can be traced back to 1800 years ago. The discovery of MHHAV may provide new insights into the origin and evolution of HAV and a model system with which to explore the pathogenesis of HAV infection.


Assuntos
Hepatovirus/classificação , Marmota/virologia , Animais , Antígenos Virais , Composição de Bases , Teorema de Bayes , Códon , Epitopos/imunologia , Evolução Molecular , Genoma Viral , Genômica , Genótipo , Hepatovirus/genética , Hepatovirus/imunologia , Hepatovirus/ultraestrutura , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Filogenia , RNA Viral
18.
PLoS One ; 10(7): e0130977, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26193371

RESUMO

Salivirus was recently discovered in children with gastroenteritis and in sewage. Though a causative role for salivirus in childhood gastroenteritis was suggested in the previous study, the relationship between salivirus and acute gastroenteritis has not yet been clearly clarified. The sewage strain reported by Ng, although represented by incomplete genome sequencing data, was distinct from previously reported saliviruses, and had not previously been detected in humans. A case-control study examining 461 paired stool samples from children with diarrhea and healthy controls (1:1) was conducted in this study. Also, common diarrheal viruses were detected and complete genome of a salivirus was determined. Results showed that salivirus was detected in 16 (3.5%) and 13 (2.8%) of the case and control samples, respectively; no differences in detection rates (p=0.571) or mean values of viral loads (p=0.400) were observed between the groups. Multivariate Cox regression revealed no association between salivirus and gastroenteritis (p=0.774). The data also demonstrated that salivirus infection did not exacerbate clinical symptoms of gastroenteritis in children. Furthermore, complete genome sequence of a salivirus recovered from the feces of a child with diarrhea (i.e., SaliV-FHB) shared a 99% nucleotide identity with the sewage strain. In conclusion, a paired case-control study did not support a causative role for salivirus strains detected in this study with pediatric gastroenteritis. This study also demonstrated that all known saliviruses can be detected in the feces of children with or without gastroenteritis.


Assuntos
Gastroenterite/virologia , Picornaviridae/isolamento & purificação , Picornaviridae/fisiologia , Doença Aguda , Estudos de Casos e Controles , Pré-Escolar , Fezes/virologia , Feminino , Genoma Viral/genética , Humanos , Lactente , Recém-Nascido , Masculino , Picornaviridae/genética , Análise de Sequência
19.
Arch Virol ; 160(2): 549-52, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25362545

RESUMO

A highly divergent human papillomavirus, named HPV-CH2, was identified in fecal samples from children with diarrhea in China by 454 high-throughput sequencing. Here, we report the complete genome sequence and genetic organization of the virus. The full-length nucleotide sequence of HPV-CH2 shares the highest sequence similarity with HPV-156, with 72 % nucleotide sequence identity. The L1 gene of the HPV-CH2 shared <70 % nucleotide identity with previously reported HPVs, suggesting HPV-CH2 as a new type of papillomavirus. Phylogenetic analysis revealed that the HPV-CH2 belongs to the genus Gammapapillomavirus. No HPV-CH2 was detected by PCR in samples from children with both gastroenteritis and respiratory infection.


Assuntos
DNA Viral/genética , Diarreia/virologia , Gammapapillomavirus/genética , Genoma Viral/genética , Sequência de Bases , Pré-Escolar , China , Fezes/virologia , Gammapapillomavirus/classificação , Gammapapillomavirus/isolamento & purificação , Variação Genética , Humanos , Lactente , Metagenômica , Infecções por Papillomavirus/virologia , Filogenia , Análise de Sequência de DNA
20.
Biomed Environ Sci ; 27(11): 841-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25374017

RESUMO

OBJECTIVE: The aim of this study was to explore the prevalent characteristics of HBoV1 and its co-infection. METHODS: PCR was used to detect HBoV1-DNA (HBoV1) and other viruses. A multivariate logistic regression model was used to explore possibility of co-detected for related viruses. RESULTS: The positivity rates in Nanjing and Lanzhou were 9.38% (74/789) and 11.62% (161/1386), respectively (P>0.05). The HBoV1 positive group was younger than negative group (P<0.05). Seasonal differences were noted, with a higher frequency of infection in December and July. HBoV1-positive children [72.34% (169/235)] were co-infected with other respiratory viruses. Multifactorial analysis showed no correlations between HBoV1 and the clinical classification, region, gender, age, or treatment as an outpatient or in a hospital. Correlations were identified between HBoV1 infections with ADV (OR=1.53, 95% CI 1.03-2.28), RSV (OR=0.71, 95% CI 0.52-0.98), and IFVA (OR=1.77, 95% CI 1.00-3.13). CONCLUSION: Presence of HBoV1 in nasopharyngeal aspirates did not correlate with region or gender, although the prevalence of HBoV1 was higher in younger children. There were no correlations between HBoV1 and other variables, except for the season and ADV, RSV, or IFVA infections.


Assuntos
Bocavirus Humano/isolamento & purificação , Infecções por Parvoviridae/virologia , Infecções Respiratórias/virologia , Doença Aguda , Pré-Escolar , China/epidemiologia , Comorbidade , DNA Viral/genética , Feminino , Bocavirus Humano/genética , Humanos , Modelos Logísticos , Masculino , Análise Multivariada , Infecções por Parvoviridae/epidemiologia , Prevalência , Infecções Respiratórias/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA