Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1100601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968379

RESUMO

Introduction: Alfalfa (Medicago sativa L.) is a highly nutritious leguminous forage that plays an essential role in animal husbandry. In the middle and high latitudes of the northern hemisphere, there are problems with its low rates of overwintering and production. The application of phosphate (P) is an important measure to improve the cold resistance and production of alfalfa, but little is known about the mechanism of P in improving the cold resistance of alfalfa. Methods: This study integrated the transcriptome and metabolome to explain the mechanism of alfalfa in response to low-temperature stress under two applications of P (50 and 200 mg kg-1) and a control of none applied. Results: The application of P fertilizer improved the root structure and increased the content of soluble sugar and soluble protein in the root crown. In addition, there were 49 differentially expressed genes (DEGs) with 23 upregulated and 24 metabolites with 12 upregulated when 50 mg kg-1 of P was applied. In contrast, there were 224 DEGs with 173 upregulated and 12 metabolites with 6 upregulated in the plants treated with 200 mg kg-1 of P compared with the Control Check (CK). These genes and metabolites were significantly enriched in the biosynthesis of other secondary metabolites and the metabolic pathways of carbohydrates and amino acids. The integration of the transcriptome and metabolome indicated that P affected the biosynthesis of N-acetyl-L-phenylalanine, L-serine, lactose, and isocitrate during the period of increasing cold. It could also affect the expression of related genes that regulate cold tolerance in alfalfa. Discussion: Our findings could contribute to a deeper understanding of the mechanism that alfalfa uses to tolerate cold and lay a theoretical foundation for breeding alfalfa that is highly efficient at utilizing phosphorus.

2.
Front Plant Sci ; 13: 919912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755687

RESUMO

Salt stress account for large decreases in crop yield all over the world. Furrow-bed system is an efficient practice to promote plant growth in saline soil. However, the effects of Furrow-bed system on the soil environment and the growth of alfalfa (Medicago sativa L.) in salinity are not clear. For a wider and more detail evaluation, alfalfa were planted in saline sandy loam soil in fall, the effects of two plant systems (FU, furrow-bed seeding system; FL, flat-bed seeding system) on soil moisture, root zone salinity, soil microbial community structure, seedling emergence number in the early stage of the growth period and soil nutrient contents, alfalfa production characteristics in the second growth year were determined in a 2-year field experiment. The result showed that, compared with FL, FU resulted in increased soil moisture content and seedling emergence, and significantly reduced relative abundance of Actinobacteria and Choroflexi in soil, but it did not affect root zone salinity at the seedling stage. In April of second growth year, the soil salinity was lower, and the soil available phosphorus, potassium, nitrogen, and soil organic matter contents of the root zone were higher in FU than in FL. Compared with FL, FU resulted in increased yield (by 37.5%), protein content (by 3.6%), and potassium concentration (by 33.2%), and decreased ash content (by 7.7%), and sodium concentration (by 19.0%) in alfalfa plants. Pearson's correlation analysis indicated that the increased yield was positively correlated with seedling emergence, soil available potassium, total nitrogen, and organic matter contents, and shoot potassium content and negatively correlated with shoot sodium content. The relative abundance of Actinobacteria was negatively correlated with alfalfa ash, calcium, and sodium concentrations, and positively correlated with shoot potassium content. Taken together, the results indicate that Furrow-bed seeding in early fall alleviated salt stress of alfalfa and have the potential to enhance the yield and quality of alfalfa cultivated in saline soils by improving the soil environment and regulating the growth and physiology of alfalfa. Graphical Abstract.

3.
PLoS One ; 15(1): e0227208, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31951623

RESUMO

Siberian wild rye (Elymus sibiricus L.), an allotetraploid species, is a potentially high-quality perennial forage crop native to temperate regions. We used fluorescently conjugated oligonucleotides, representing ten repetitive sequences, including 6 microsatellite repeats, two satellite repeats, and two ribosomal DNAs, to characterize E. sibiricus chromosomes, using sequential fluorescence in situ hybridization and genomic in situ hybridization assays. Our results showed that microsatellite repeats (AAG)10 or (AGG)10, satellite repeats pAs1 and pSc119.2, and ribosomal 5S rDNA and 45S rDNA are specific markers for unique chromosomes. A referable karyotype ideogram was suggested, by further polymorphism screening, across different E. sibiricus cultivars with a probe mixture of (AAG)10, Oligo-pAs1, and Oligo-pSc119.2. Chromosomal polymorphisms vary between different genomes and between different individual chromosomes. In particular, two distinct forms of chromosome E in H genome were identified in intra- and inter-populations. Here, the significance of these results, for E. sibiricus genome research and breeding, and novel approaches to improve fluorescence in situ hybridization-based karyotyping are discussed.


Assuntos
Elymus/genética , Genoma de Planta , Cromossomos de Plantas , DNA de Plantas/genética , DNA Ribossômico/genética , Hibridização in Situ Fluorescente , Cariotipagem , Repetições de Microssatélites , Sondas de Oligonucleotídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA