Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
2.
J Med Chem ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026395

RESUMO

Substituting hydrogen with deuterium in drug molecules is an appealing bioisosteric strategy for the generation of novel chemical entities in drug development. Optimizing lead compounds through deuteration has proven to be challenging and unpredictable, particularly for compounds with multiple metabolic sites. This study presents the pioneering achievement of substituting up to 19 hydrogen atoms with deuterium on 1,4-benzodiazepine-2,5-dione derivatives, shedding light on the structure-metabolism relationship and the impact of multiple deuterations on drug-like properties. Notably, the deuterated compound 3f exhibited remarkable antitumor activity in vivo and demonstrated favorable drug-like properties as a drug candidate.

3.
Adv Sci (Weinh) ; : e2405135, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049722

RESUMO

Lithium-ion batteries with transition metal sulfides (TMSs) anodes promise a high capacity, abundant resources, and environmental friendliness, yet they suffer from fast degradation and low Coulombic efficiency. Here, a heterostructured bimetallic TMS anode is fabricated by in situ encapsulating SnS2/MoS2 nanoparticles within an amphiphilic hollow double-graphene sheet (DGS). The hierarchically porous DGS consists of inner hydrophilic graphene and outer hydrophobic graphene, which can accelerate electron/ion migration and strongly hold the integrity of alloy microparticles during expansion and/or shrinkage. Moreover, catalytic Mo converted from lithiated MoS2 can promote the reaction kinetics and suppress heterointerface passivation by forming a building-in-electric field, thereby enhancing the reversible conversion of Sn to SnS2. Consequently, the SnS2/MoS2/DGS anode with high gravimetric and high volumetric capacities achieves 200 cycles with a high initial Coulombic efficiency of >90%, as well as excellent low-temperature performance. When the commercial Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode is paired with the prelithiated SnS2/MoS2/DGS anode, the full cells deliver high gravimetric and volumetric energy densities of 577 Wh kg-1 and 853 Wh L-1, respectively. This work highlights the significance of integrating spatial confinement and atomic heterointerface engineering to solve the shortcomings of conversion-/alloying typed TMS-based anodes to construct outstanding high-energy LIBs.

4.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119804, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39084528

RESUMO

BACKGROUND: Myocardial fibrosis is an important pathological feature of dilated cardiomyopathy (DCM). The roles of SOCS2 in fibrosis of different organs are controversial. Herein, we investigated the function and potential mechanism of SOCS2 in myocardial fibrosis. METHODS: Bioinformatics, immunohistochemistry (IHC), immunofluorescence (IF), western blot (WB), real-time fluorescence quantitative PCR (qPCR), rat primary myocardial fibroblasts (rCFs) culture, doxorubicin (DOX) induced mouse dilated cardiomyopathy (DCM) model, and in vivo adeno-associated virus (AAV) infection were used to explore the role of SOCS2 in DCM. RESULTS: Bioinformatics analysis showed that SOCS2 was positively correlated with fibrosis related factors. SOCS2 was significantly upregulated in patients and mice with DCM. In vivo experiments showed that targeted inhibition of cardiac SOCS2 could improve mouse cardiac function and alleviate myocardial fibrosis. Further research demonstrated that SOCS2 promoted the transformation of myofibroblasts. Knockdown of SOCS2 reduced the nuclear localization of ß-catenin, which inhibited the fibrogenic effect of Wnt/ß-catenin pathway. In addition, bioinformatics analysis suggested that lymphoid enhancer binding factor 1 (LEF1) was significantly positively correlated with SOCS2. Finally, dual luciferase assays demonstrated that LEF1 could bind to the promoter region of SOCS2, thereby mediating its transcriptional activation. CONCLUSION: SOCS2 could activate the Wnt/ß-catenin by regulating the nuclear translocation of ß-catenin, which induces the transcriptional activation of SOCS2. Overall, these results indicated a positive feedback activation phenomenon between SOCS2, ß-catenin and LEF1 in DCM. These results suggested that inhibition of SOCS2 could effectively alleviate the progression of myocardial fibrosis and improve cardiac function.

5.
J Perianesth Nurs ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39023477

RESUMO

PURPOSE: The aim of this study was to evaluate the effect of remifentanil pretreatment on sufentanil-induced cough during general anesthesia induction. DESIGN: This experimental research was conducted as a single-center, randomized, parallel-group trial. METHODS: A total of 120 patients scheduled for elective surgery were equally randomized into two groups (remifentanil and control). The incidence and severity of coughing in both groups were recorded after sufentanil administration during general anesthesia induction. The mean arterial pressure, heart rate, and pulse oxygen saturation were recorded at T1 (before the injection of remifentanil or normal saline), T2 (1 minute after remifentanil administration), T3 (before intubation), and T4 (1 minute after intubation). Additionally, the incidences of adverse events, including dizziness, nausea, apnea, truncal rigidity, bradycardia, or other adverse effects were also recorded. FINDINGS: The incidence of sufentanil-induced cough in the remifentanil group was significantly decreased when compared with the control group (5.0% vs 35.0%, respectively; P < .001). No statistical differences were found in mean arterial pressure, heart rate, pulse oxygen saturation, and the incidences of other side effects between the two groups at T1, T2, T3, and T4 (P > .05). CONCLUSIONS: Pretreatment with remifentanil at a dose of 0.5 mcg/kg can effectively and safely suppress the incidence and severity of sufentanil-induced coughing, providing a reference for medication during general anesthesia induction.

6.
Free Radic Biol Med ; 222: 244-258, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901499

RESUMO

Doxorubicin (Dox) use is limited by Dox-induced cardiotoxicity. TANK-blinding kinase 1 (TBK1) is an important kinase involved in the regulation of mitophagy, but the role of TBK1 in cardiomyocytes in chronic Dox-induced cardiomyopathy remains unclear. Cardiomyocyte-specific Tbk1 knockout (Tbk1CKO) mice received Dox (6 mg/kg, injected intraperitoneally) once a week for 4 times, and cardiac assessment was performed 4 weeks after the final Dox injection. Adenoviruses encoding Tbk1 or containing shRNA targeting Tbk1, or a TBK1 phosphorylation inhibitor were used for overexpression or knockdown of Tbk1, or inhibit phosphorylation of TBK1 in isolated primary cardiomyocytes. Our results revealed that moderate Dox challenge decreased TBK1 phosphorylation (with no effect on TBK1 protein levels), resulting in compromised myocardial function, obvious mortality and overt interstitial fibrosis, and the effects were accentuated by Tbk1 deletion. Dox provoked mitochondrial membrane potential collapse and oxidative stress, the effects of which were exacerbated and mitigated by Tbk1 knockdown, specific inhibition of phosphorylation and overexpression, respectively. However, Tbk1 (Ser172A) overexpression did not alleviate these effects. Further scrutiny revealed that TBK1 exerted protective effects on mitochondria via SQSTM1/P62-mediated mitophagy. Tbk1 overexpression mediated cardioprotective effects on Dox-induced cardiotoxicity were cancelled off by Sqstm1/P62 knockdown. Moreover, TBK1-mitophagy-mitochondria cascade was confirmed in heart tissues from dilated cardiomyopathy patients. Taken together, our findings denoted a pivotal role of TBK1 in Dox-induced mitochondrial injury and cardiotoxicity possibly through its phosphorylation and SQSTM1/P62-mediated mitophagy.

7.
Insights Imaging ; 15(1): 143, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867121

RESUMO

OBJECTIVES: To establish a radiomics-based automatic grading model for knee osteoarthritis (OA) and evaluate the influence of different body positions on the model's effectiveness. MATERIALS AND METHODS: Plain radiographs of a total of 473 pairs of knee joints from 473 patients (May 2020 to July 2021) were retrospectively analyzed. Each knee joint included anteroposterior (AP) and lateral (LAT) images which were randomly assigned to the training cohort and the testing cohort at a ratio of 7:3. First, an assessment of knee OA severity was done by two independent radiologists with Kallgren-Lawrence grading scale. Then, another two radiologists independently delineated the region of interest for radiomic feature extraction and selection. The radiomic classification features were dimensionally reduced and a machine model was conducted using logistic regression (LR). Finally, the classification efficiency of the model was evaluated using receiver operating characteristic curves and the area under the curve (AUC). RESULTS: The AUC (macro/micro) of the model using a combination of AP and LAT (AP&LAT) images were 0.772/0.778, 0.818/0.799, and 0.864/0.879, respectively. The radiomic features from the combined images achieved better classification performance than the individual position image (p < 0.05). The overall accuracy of the radiomic model with AP&LAT images was 0.727 compared to 0.712 and 0.417 for radiologists with 4 years and 2 years of musculoskeletal diagnostic experience. CONCLUSIONS: A radiomic model constructed by combining the AP&LAT images of the knee joint can better grade knee OA and assist clinicians in accurate diagnosis and treatment. CRITICAL RELEVANCE STATEMENT: A radiomic model based on plain radiographs accurately grades knee OA severity. By utilizing the LR classifier and combining AP&LAT images, it improves accuracy and consistency in grading, aiding clinical decision-making, and treatment planning. KEY POINTS: Radiomic model performed more accurately in K/L grading of knee OA than junior radiologists. Radiomic features from the combined images achieved better classification performance than the individual position image. A radiomic model can improve the grading of knee OA and assist in diagnosis and treatment.

8.
Mol Pharm ; 21(5): 2081-2096, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38630656

RESUMO

Small interfering RNAs (siRNAs) are promising therapeutic strategies, and five siRNA drugs have been approved by the Food and Drug Administration (FDA) and the European Commission (EC). This marks a significant milestone in the development of siRNA for clinical applications. The approved siRNA agents can effectively deliver siRNAs to the liver and treat liver-related diseases. Currently, researchers have developed diverse delivery platforms for transporting siRNAs to different tissues such as the brain, lung, muscle, and others, and a large number of siRNA drugs are undergoing clinical trials. Here, these delivery technologies and the latest advancements in clinical applications are summarized, and this Review provides a concise overview of the strategies employed for siRNA delivery to both hepatic and extrahepatic tissues.


Assuntos
RNA Interferente Pequeno , RNA Interferente Pequeno/administração & dosagem , Humanos , Animais , Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Fígado/metabolismo , Interferência de RNA , Nanopartículas/química , United States Food and Drug Administration , Ensaios Clínicos como Assunto
9.
Artigo em Inglês | MEDLINE | ID: mdl-38457025

RESUMO

Colorectal cancer (CRC) is the fourth most common cancer in the world, with the second highest incidence rate after lung cancer. Oxaliplatin (OXA) is a broad-spectrum anti-tumor agent with significant therapeutic efficacy in colorectal cancer, and as a divalent platinum analog, it is not selective in its distribution in the body and has systemic toxicity with continued use. Interleukin-12 (IL12) is an immunostimulatory cytokine with cytokine monotherapy that has made advances in the fight against cancer, limiting the clinical use of cytokines due to severe toxicity. Here, we introduced a long alkyl chain and N-methyl-2,2-diaminodiethylamine to the ligand of OXA to obtain OXA-LIP, which effectively reduces its toxicity and improves the uptake of the drug by tumor cells. We successfully constructed IL12 mRNA and used LNPs to deliver IL12 mRNA, and in vivo pharmacodynamic studies demonstrated that OXA-LIP combined with IL12 mRNA had better tumor inhibition and higher biosafety. In addition, it was investigated by pharmacokinetic experiments that the OXA-LIP drug could accumulate in nude mice at the tumor site, which prolonged the half-life and enhanced the anti-tumor efficiency of OXA. It is hoped that these results will provide an important reference for the subsequent research and development of OXA-LIP with IL12 mRNA, as well as provide new therapeutic approaches for the treatment of colon cancer.

10.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542270

RESUMO

Soybean (Glycine max) plants first emerged in China, and they have since been established as an economically important oil crop and a major source of daily protein for individuals throughout the world. Seed emergence height is the first factor that ensures seedling adaptability to field management practices, and it is closely related to epicotyl length. In the present study, the Suinong 14 and ZYD00006 soybean lines were used as parents to construct chromosome segment substitution lines (CSSLs) for quantitative trait loci (QTL) identification. Seven QTLs were identified using two years of epicotyl length measurement data. The insertion region of the ZYD00006 fragment was identified through whole genome resequencing, with candidate gene screening and validation being performed through RNA-Seq and qPCR, and Glyma.08G142400 was ultimately selected as an epicotyl length-related gene. Through combined analyses of phenotypic data from the study population, Glyma.08G142400 expression was found to be elevated in those varieties exhibiting longer epicotyl length. Haplotype data analyses revealed that epicotyl data were consistent with haplotype typing. In summary, the QTLs found to be associated with the epicotyl length identified herein provide a valuable foundation for future molecular marker-assisted breeding efforts aimed at improving soybean emergence height in the field, with the Glyma.08G142400 gene serving as a regulator of epicotyl length, offering new insight into the mechanisms that govern epicotyl development.


Assuntos
Glycine max , Locos de Características Quantitativas , Humanos , Glycine max/genética , Mapeamento Cromossômico , Melhoramento Vegetal , Sementes/metabolismo , Mineração de Dados
11.
J Transl Med ; 22(1): 297, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38515161

RESUMO

BACKGROUND: The aberrant secretion and excessive deposition of type I collagen (Col1) are important factors in the pathogenesis of myocardial fibrosis in dilated cardiomyopathy (DCM). However, the precise molecular mechanisms underlying the synthesis and secretion of Col1 remain unclear. METHODS AND RESULTS: RNA-sequencing analysis revealed an increased HtrA serine peptidase 1 (HTRA1) expression in patients with DCM, which is strongly correlated with myocardial fibrosis. Consistent findings were observed in both human and mouse tissues by immunoblotting, quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemistry, and immunofluorescence analyses. Pearson's analysis showed a markedly positive correlation between HTRA1 level and myocardial fibrosis indicators, including extracellular volume fraction (ECV), native T1, and late gadolinium enhancement (LGE), in patients with DCM. In vitro experiments showed that the suppression of HTRA1 inhibited the conversion of cardiac fibroblasts into myofibroblasts and decreased Col1 secretion. Further investigations identified the role of HTRA1 in promoting the formation of endoplasmic reticulum (ER) exit sites, which facilitated the transportation of Col1 from the ER to the Golgi apparatus, thereby increasing its secretion. Conversely, HTRA1 knockdown impeded the retention of Col1 in the ER, triggering ER stress and subsequent induction of ER autophagy to degrade misfolded Col1 and maintain ER homeostasis. In vivo experiments using adeno-associated virus-serotype 9-shHTRA1-green fluorescent protein (AAV9-shHTRA1-GFP) showed that HTRA1 knockdown effectively suppressed myocardial fibrosis and improved left ventricular function in mice with DCM. CONCLUSIONS: The findings of this study provide valuable insights regarding the treatment of DCM-associated myocardial fibrosis and highlight the therapeutic potential of targeting HTRA1-mediated collagen secretion.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Animais , Humanos , Camundongos , Colágeno Tipo I , Meios de Contraste , Fibrose , Gadolínio , Miocárdio/patologia
12.
MedComm (2020) ; 5(2): e481, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38344397

RESUMO

Drug development is a long and costly process, with a high degree of uncertainty from the identification of a drug target to its market launch. Targeted drugs supported by human genetic evidence are expected to enter phase II/III clinical trials or be approved for marketing more quickly, speeding up the drug development process. Currently, genetic data and technologies such as genome-wide association studies (GWAS), whole-exome sequencing (WES), and whole-genome sequencing (WGS) have identified and validated many potential molecular targets associated with diseases. This review describes the structure, molecular biology, and drug development of human genetics-based validated beneficial loss-of-function (LOF) mutation targets (target mutations that reduce disease incidence) over the past decade. The feasibility of eight beneficial LOF mutation targets (PCSK9, ANGPTL3, ASGR1, HSD17B13, KHK, CIDEB, GPR75, and INHBE) as targets for drug discovery is mainly emphasized, and their research prospects and challenges are discussed. In conclusion, we expect that this review will inspire more researchers to use human genetics and genomics to support the discovery of novel therapeutic drugs and the direction of clinical development, which will contribute to the development of new drug discovery and drug repurposing.

13.
Int J Biol Sci ; 20(1): 29-46, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164183

RESUMO

Background: Thoracic aortic dissection (TAD) is one of the cardiovascular diseases with high incidence and fatality rates. Vascular smooth muscle cells (VSMCs) play a vital role in TAD formation. Recent studies have shown that extracellular S100A4 may participate in VSMCs regulation. However, the mechanism(s) underlying this association remains elusive. Consequently, this study investigated the role of S100A4 in VSMCs regulation and TAD formation. Methods: Hub genes were screened based on the transcriptome data of aortic dissection in the Gene Expression Synthesis database. Three-week-old male S100A4 overexpression (AAV9- S100A4 OE) and S100A4 knockdown (AAV9- S100A4 KD) mice were exposed to ß-aminopropionitrile monofumarate through drinking water for 28 days to create the murine TAD model. Results: S100A4 was observed to be the hub gene in aortic dissection. Furthermore, overexpression of S100A4 was exacerbated, whereas inhibition of S100A4 significantly improved TAD progression. In the TAD model, the S100A4 was observed to aggravate the phenotypic transition of VSMCs. Additionally, lysyl oxidase (LOX) was an important target of S100A4 in TAD. S100A4 interacted with LOX in VSMCs, reduced mature LOX (m-LOX), and decreased elastic fiber deposition, thereby disrupting extracellular matrix homeostasis and promoting TAD development. Elastic fiber deposition in human aortic tissues was negatively correlated with the expression of S100A4, which in turn, was negatively correlated with LOX. Conclusions: Our data showed that S100A4 modulates TADprogression, induces lysosomal degradation of m-LOX, and reduces the deposition of elastic fibers by interacting with LOX, thus contributing to the disruption of extracellular matrix homeostasis in TAD. These findings suggest that S100A4 may be a new target for the prevention and treatment of TAD.


Assuntos
Dissecção Aórtica , Dissecção da Aorta Torácica , Masculino , Humanos , Camundongos , Animais , Dissecção Aórtica/genética , Aorta , Matriz Extracelular , Proteína A4 de Ligação a Cálcio da Família S100/genética
14.
Int J Biol Macromol ; 254(Pt 1): 127696, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37913874

RESUMO

A feature of the Chinese soft-shelled turtle (Pelodiscus sinensis) is seasonal spermatogenesis; however, the underlying molecular mechanism is not well clarified. Here, we firstly cloned and characterized P. sinensis DKKL1, and then performed comparative genomic studies, expression analysis, and functional validation. P. sinensis DKKL1 had 2 putative N-glycosylation sites and 16 phosphorylation sites. DKKL1 also had classic transmembrane structures that were extracellularly localized. DKKL1's genetic distance was close to turtles, followed by amphibians and mammals, but its genetic distance was far from fishes. DKKL1 genes from different species shared distinct genomic characteristics. Meanwhile, they were also relatively conserved among themselves, at least from the perspective of classes. Notably, the transcription factors associated with spermatogenesis were also identified, containing CTCF, EWSR1, and FOXL2. DKKL1 exhibited sexually dimorphic expression only in adult gonads, which was significantly higher than that in other somatic tissues (P < 0.001), and was barely expressed in embryonic gonads. DKKL1 transcripts showed a strong signal in sperm, while faint signals were detected in other male germ cells. DKKL1 in adult testes progressively increased per month (P < 0.05), displaying a seasonal expression trait. DKKL1 was significantly downregulated in testes cells after the sex hormones (17ß-estradiol and 17α-methyltestosterone) and Wnt/ß-catenin inhibitor treatment (P < 0.05). Likewise, the Wnt/ß-catenin inhibitor treatment dramatically repressed CTCF, EWSR1, and FOXL2 expression. Conversely, they were markedly upregulated after the 17ß-estradiol and 17α-methyltestosterone treatment, suggesting that the three transcription factors might bind to different promoter regions, thereby negatively regulating DKKL1 transcription in response to the changes in the estrogen and androgen pathways, and positively controlling DKKL1 transcription in answer to the alterations in the Wnt/ß-catenin pathway. Knockdown of DKKL1 significantly reduced the relative expression of HMGB2 and SPATS1 (P < 0.01), suggesting that it may be involved in seasonal spermatogenesis of P. sinensis through a positive regulatory interaction with these two genes. Overall, our findings provide novel insights into the genome evolution and potential functions of seasonal spermatogenesis of P. sinensis DKKL1.


Assuntos
Tartarugas , Animais , Masculino , Tartarugas/genética , Tartarugas/metabolismo , beta Catenina/metabolismo , Metiltestosterona/metabolismo , Sêmen , Espermatogênese/genética , Estradiol/metabolismo , Genômica , Mamíferos
15.
Mol Cancer Ther ; 23(2): 148-158, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37988561

RESUMO

Interleukin 35(IL-35) is a newly discovered inhibitory cytokine of the IL12 family. More recently, IL-35 was found to be increased in the tumor microenvironment (TME) and peripheral blood of many patients with cancer, indicating that it plays an important role in the TME. Tumors secrete cytokines that recruit myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Treg) into the TME to promote malignant progression, which is a great challenge for cancer treatment. Radiotherapy causes serious adverse effects, and tumor resistance to immune checkpoint inhibitors is still an unsolved challenge. Thus, new cancer therapy approaches are urgently needed. Numerous studies have shown that IL-35 can recruit immunosuppressive cells to enable tumor immune escape by promoting the conversion of immune cells into a tumor growth-promoting phenotype as well as facilitating tumor angiogenesis. IL-35-neutralizing antibodies were found to boost the chemotherapeutic effect of gemcitabine and considerably reduce the microvascular density of pancreatic cancer in mice. Therefore, targeting IL-35 in the TME provides a promising cancer treatment target. In addition, IL-35 may be used as an independent prognostic factor for some tumors in the near future. This review intends to reveal the interplay of IL-35 with immune cells in the TME, which may provide new options for the treatment of cancer.


Assuntos
Neoplasias , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Microambiente Tumoral , Imunoterapia , Neoplasias/tratamento farmacológico , Citocinas/farmacologia , Interleucinas
16.
Acta Pharm Sin B ; 13(12): 4823-4839, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045047

RESUMO

Clinical application of doxorubicin (DOX) is heavily hindered by DOX cardiotoxicity. Several theories were postulated for DOX cardiotoxicity including DNA damage and DNA damage response (DDR), although the mechanism(s) involved remains to be elucidated. This study evaluated the potential role of TBC domain family member 15 (TBC1D15) in DOX cardiotoxicity. Tamoxifen-induced cardiac-specific Tbc1d15 knockout (Tbc1d15CKO) or Tbc1d15 knockin (Tbc1d15CKI) male mice were challenged with a single dose of DOX prior to cardiac assessment 1 week or 4 weeks following DOX challenge. Adenoviruses encoding TBC1D15 or containing shRNA targeting Tbc1d15 were used for Tbc1d15 overexpression or knockdown in isolated primary mouse cardiomyocytes. Our results revealed that DOX evoked upregulation of TBC1D15 with compromised myocardial function and overt mortality, the effects of which were ameliorated and accentuated by Tbc1d15 deletion and Tbc1d15 overexpression, respectively. DOX overtly evoked apoptotic cell death, the effect of which was alleviated and exacerbated by Tbc1d15 knockout and overexpression, respectively. Meanwhile, DOX provoked mitochondrial membrane potential collapse, oxidative stress and DNA damage, the effects of which were mitigated and exacerbated by Tbc1d15 knockdown and overexpression, respectively. Further scrutiny revealed that TBC1D15 fostered cytosolic accumulation of the cardinal DDR element DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Liquid chromatography-tandem mass spectrometry and co-immunoprecipitation denoted an interaction between TBC1D15 and DNA-PKcs at the segment 594-624 of TBC1D15. Moreover, overexpression of TBC1D15 mutant (∆594-624, deletion of segment 594-624) failed to elicit accentuation of DOX-induced cytosolic retention of DNA-PKcs, DNA damage and cardiomyocyte apoptosis by TBC1D15 wild type. However, Tbc1d15 deletion ameliorated DOX-induced cardiomyocyte contractile anomalies, apoptosis, mitochondrial anomalies, DNA damage and cytosolic DNA-PKcs accumulation, which were canceled off by DNA-PKcs inhibition or ATM activation. Taken together, our findings denoted a pivotal role for TBC1D15 in DOX-induced DNA damage, mitochondrial injury, and apoptosis possibly through binding with DNA-PKcs and thus gate-keeping its cytosolic retention, a route to accentuation of cardiac contractile dysfunction in DOX-induced cardiotoxicity.

17.
JACC Basic Transl Sci ; 8(9): 1215-1239, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37791317

RESUMO

Mitochondrial dysfunction is suggested to be a major contributor for the progression of heart failure (HF). Here we examined the role of syntaxin 17 (STX17) in the progression of HF. Cardiac-specific Stx17 knockout manifested cardiac dysfunction and mitochondrial damage, associated with reduced levels of p(S616)-dynamin-related protein 1 (DRP1) in mitochondria-associated endoplasmic reticulum membranes and dampened mitophagy. Cardiac STX17 overexpression promoted DRP1-dependent mitophagy and attenuated transverse aortic constriction-induced contractile and mitochondrial damage. Furthermore, STX17 recruited cyclin-dependent kinase-1 through its SNARE domain onto mitochondria-associated endoplasmic reticulum membranes, to phosphorylate DRP1 at Ser616 and promote DRP1-mediated mitophagy upon transverse aortic constriction stress. These findings indicate the potential therapeutic benefit of targeting STX17 in the mitigation of HF.

18.
Abdom Radiol (NY) ; 48(10): 3127-3134, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37439840

RESUMO

OBJECTIVE: To investigate the diagnostic value of early dynamic 18F-FDG PET/CT(ED 18F-FDG PET/CT) combined with conventional whole-body 18F-FDG PET/CT(WB 18F-FDG PET/CT) in hepatocellular carcinoma (HCC), as well as the difference of early dynamic blood flow parameters and maximum standardized uptake value (SUVmax) in HCC patients with/without liver cirrhosis or microvascular invasion (MVI). METHODS: Twenty-two consecutive patients (mean age 57.8 years) with 28 established HCC lesions (mean size 4.5 cm) underwent a blood flow study with an 18F-FDG dynamic scan divided into 24 sequences of 5 s each and a standard PET/CT scan. On the ED PET/CT study, an experienced PET/CT physician obtained volumes of interest (VOIs) where three blood flow estimates (time to peak [TTP], blood flow [BF], and hepatic perfusion index [HPI]) were calculated. On the WB PET/CT study, a VOI was placed on the fused scan for each HCC and maximum standardized uptake value (SUVmax) was obtained. Comparison of blood flow estimates, SUVmax, and tumor/background ratio (TNR) was performed among HCCs with and without angioinvasion, as well as HCCs in cirrhotic and non-cirrhotic liver. RESULTS: Compared with WB 18F-FDG PET/CT alone, ED combined with WB 18F-FDG PET/CT can significantly increase the detection rate of moderately differentiated and poorly differentiated HCCs (both P < 0.05). HPI was higher in HCCs in patients with liver cirrhosis than those without liver cirrhosis (P = 0.044). There was no significant difference in TTP, BF, SUVmax, or TNR between HCCs in patients with liver cirrhosis and those without liver cirrhosis. There was no significant difference in blood flow estimates or SUVmax in background liver parenchyma between patients with and those without cirrhosis. TTP was shorter in HCCs with MVI than without MVI (P = 0.046). There was no significant difference in BF, HPI, SUVmax, or TNR between HCCs with MVI and without MVI. There was no significant difference in blood flow estimates or SUVmax in background liver parenchyma between patients with and those without MVI. CONCLUSION: ED combined with WB 18F-FDG PET/CT can significantly increase the detection rate of moderately differentiated and poorly differentiated HCCs. HPI was significantly higher in HCCs in patients with liver cirrhosis than those without liver cirrhosis. TTP was significantly shorter in HCCs with MVI than without MVI.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Pessoa de Meia-Idade , Carcinoma Hepatocelular/patologia , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Hepáticas/patologia , Compostos Radiofarmacêuticos , Tomografia por Emissão de Pósitrons , Cirrose Hepática
19.
Quant Imaging Med Surg ; 13(6): 3587-3601, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37284121

RESUMO

Background: Knee osteoarthritis (OA) is harmful to people's health. Effective treatment depends on accurate diagnosis and grading. This study aimed to assess the performance of a deep learning (DL) algorithm based on plain radiographs in detecting knee OA and to investigate the effect of multiview images and prior knowledge on diagnostic performance. Methods: In total, 4,200 paired knee joint X-ray images from 1,846 patients (July 2017 to July 2020) were retrospectively analyzed. Kellgren-Lawrence (K-L) grading was used as the gold standard for knee OA evaluation by expert radiologists. The DL method was used to analyze the performance of anteroposterior and lateral plain radiographs combined with prior zonal segmentation to diagnose knee OA. Four groups of DL models were established according to whether they adopted multiview images and automatic zonal segmentation as the DL prior knowledge. Receiver operating curve analysis was used to assess the diagnostic performance of 4 different DL models. Results: The DL model with multiview images and prior knowledge obtained the best classification performance among the 4 DL models in the testing cohort, with a microaverage area under the receiver operating curve (AUC) and macroaverage AUC of 0.96 and 0.95, respectively. The overall accuracy of the DL model with multiview images and prior knowledge was 0.96 compared to 0.86 for an experienced radiologist. The combined use of anteroposterior and lateral images and prior zonal segmentation affected diagnostic performance. Conclusions: The DL model accurately detected and classified the K-L grading of knee OA. Additionally, multiview X-ray images and prior knowledge improved classification efficacy.

20.
Front Oncol ; 13: 1185991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284198

RESUMO

Background/objective: We retrospectively analyzed the effective and safety of continuous low-dose cyclophosphamide combined with prednisone (CP) in relapsed and refractory multiple myeloma (RRMM) patients with severe complications. Methods: A total of 130 RRMM patients with severe complications were enrolled in this study, among which 41 patients were further given bortezomib, lenalidomide, thalidomide or ixazomib on the basis of CP regimen (CP+X group). The response to therapy, adverse events (AEs), overall survival (OS) and progression-free survival (PFS) were recorded. Results: Among the 130 patients, 128 patients received therapeutic response assessment, with a complete remission rate (CRR) and objective response rate (ORR) of 4.7% and 58.6%, respectively. The median OS and PFS time were (38.0 ± 3.6) and (22.9±5.2) months, respectively. The most common AEs were hyperglycemia (7.7%), pneumonia (6.2%) and Cushing's syndrome (5.4%). In addition, we found the pro-BNP/BNP level was obviously decreased while the LVEF (left ventricular ejection fraction) was increased in RRMM patients following CP treatment as compared with those before treatment. Furthermore, CP+X regimen further improved the CRR compared with that before receiving the CP+X regimen (24.4% vs. 2.4%, P=0.007). Also, both the OS and PFS rates were significantly elevated in patients received CP+X regimen following CP regimen as compared with the patients received CP regimen only. Conclusion: This study demonstrates the metronomic chemotherapy regimen of CP is effective to RRMM patients with severe complications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA