Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Res Sq ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826194

RESUMO

Diagnosing language disorders associated with autism is a complex and nuanced challenge, often hindered by the subjective nature and variability of traditional assessment methods. Traditional diagnostic methods not only require intensive human effort but also often result in delayed interventions due to their lack of speed and specificity. In this study, we explored the application of ChatGPT, a state-of-the-art large language model, to overcome these obstacles by enhancing diagnostic accuracy and profiling specific linguistic features indicative of autism. Leveraging ChatGPT's advanced natural language processing capabilities, this research aims to streamline and refine the diagnostic process. Specifically, we compared ChatGPT's performance with that of conventional supervised learning models, including BERT, a model acclaimed for its effectiveness in various natural language processing tasks. We showed that ChatGPT substantially outperformed these models, achieving over 13\% improvement in both accuracy and F1-score in a zero-shot learning configuration. This marked enhancement highlights the model's potential as a superior tool for neurological diagnostics. Additionally, we identified ten distinct features of autism-associated language disorders that vary significantly across different experimental scenarios. These features, which included echolalia, pronoun reversal, and atypical language usage, were crucial for accurately diagnosing ASD and customizing treatment plans. Together, our findings advocate for adopting sophisticated AI tools like ChatGPT in clinical settings to assess and diagnose developmental disorders. Our approach not only promises greater diagnostic precision but also aligns with the goals of personalized medicine, potentially transforming the evaluation landscape for autism and similar neurological conditions.

2.
Physiol Mol Biol Plants ; 27(11): 2503-2515, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34924707

RESUMO

Peucedani Radix is the dry root of Peucedanum praeruptorum of the umbelliferous family, but the dry root of Angelica decursiva was also the source of Peucedani Radix in the past. As one of the most popular traditional Chinese medicinal herbs, the certified source of Peucedani Radix is still disputed. To better understand the relationship between A. decursiva and P. praeruptorum, we sequenced their chloroplast (cp) genomes. The gene structure, codon usage bias, repeat, simple sequence repeat (SSR), as well as their borders of inverted repeat (IR) regions of the two cp genomes are analyzed to identify potential genetic markers. Great variation is exhibited in the repeat sequences of IR, large single copy regions and the SSRs of the two cp genomes, which can be used as molecular markers to distinguish them. The phylogenetic analysis also indicates that they belong to two different genera in Apiaceae family: A. decursiva is an Angelica plant and P. praeruptorum is a Peucedanum plant. Our observations suggest that the two species are somewhere different in gene features, which contributes to support A. decursiva as an independent species from P. praeruptorum. The results also provide new evidence that A. decursiva should not be regarded as the certified source of Peucedani Radix in taxonomy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01097-w.

3.
IEEE Trans Image Process ; 30: 7511-7526, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34460374

RESUMO

Because of the increasing ease of video capture, many millions of consumers create and upload large volumes of User-Generated-Content (UGC) videos to social and streaming media sites over the Internet. UGC videos are commonly captured by naive users having limited skills and imperfect techniques, and tend to be afflicted by mixtures of highly diverse in-capture distortions. These UGC videos are then often uploaded for sharing onto cloud servers, where they are further compressed for storage and transmission. Our paper tackles the highly practical problem of predicting the quality of compressed videos (perhaps during the process of compression, to help guide it), with only (possibly severely) distorted UGC videos as references. To address this problem, we have developed a novel Video Quality Assessment (VQA) framework that we call 1stepVQA (to distinguish it from two-step methods that we discuss). 1stepVQA overcomes limitations of Full-Reference, Reduced-Reference and No-Reference VQA models by exploiting the statistical regularities of both natural videos and distorted videos. We also describe a new dedicated video database, which was created by applying a realistic VMAF-Guided perceptual rate distortion optimization (RDO) criterion to create realistically compressed versions of UGC source videos, which typically have pre-existing distortions. We show that 1stepVQA is able to more accurately predict the quality of compressed videos, given imperfect reference videos, and outperforms other VQA models in this scenario.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31226076

RESUMO

In a typical communication pipeline, images undergo a series of processing steps that can cause visual distortions before being viewed. Given a high quality reference image, a reference (R) image quality assessment (IQA) algorithm can be applied after compression or transmission. However, the assumption of a high quality reference image is often not fulfilled in practice, thus contributing to less accurate quality predictions when using stand-alone R IQA models. This is particularly common on social media, where hundreds of billions of usergenerated photos and videos containing diverse, mixed distortions are uploaded, compressed, and shared annually on sites like Facebook, YouTube, and Snapchat. The qualities of the pictures that are uploaded to these sites vary over a very wide range. While this is an extremely common situation, the problem of assessing the qualities of compressed images against their precompressed, but often severely distorted (reference) pictures has been little studied. Towards ameliorating this problem, we propose a novel two-step image quality prediction concept that combines NR with R quality measurements. Applying a first stage of NR IQA to determine the possibly degraded quality of the source image yields information that can be used to quality-modulate the R prediction to improve its accuracy. We devise a simple and efficient weighted product model of R and NR stages, which combines a pre-compression NR measurement with a post-compression R measurement. This first-of-a-kind two-step approach produces more reliable objective prediction scores. We also constructed a new, first-of-a-kind dedicated database specialized for the design and testing of two-step IQA models. Using this new resource, we show that twostep approaches yield outstanding performance when applied to compressed images whose original, pre-compression quality covers a wide range of realistic distortion types and severities. The two-step concept is versatile as it can use any desired R and NR components. We are making the source code of a particularly efficient model that we call 2stepQA publicly available at https://github.com/xiangxuyu/2stepQA. We are also providing the dedicated new two-step database free of charge at http://live.ece.utexas.edu/research/twostep/index.html.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA