Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Adv Mater ; : e2408161, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136199

RESUMO

Developing rechargeable batteries with high power delivery at low temperatures (LT) below 0 °C is significant for cold-climate applications. Initial anode-free sodium metal batteries (AFSMBs) promise high LT performances because of the low de-solvation energy and smaller Stokes radius of Na+, nondiffusion-limited plating/stripping electrochemistry, and maximized energy density. However, the severe reduction in electrolyte ionic conductivity and formation of unstable solid electrolyte interphase (SEI) hinder their practical applications at LT. In this study, a 2-methyltetrahydrofuran-based dilute electrolyte is designed to concurrently achieve an anion-coordinated solvation structure and impressive ionic conductivity of 3.58 mS cm-1 at -40 °C. The dominant aggregate solvates enable the formation of highly efficient and LT-resistant Na+ hopping channels in the electrolyte. Moreover, the methyl-regulated electronic structure in 2-methyltetrahydrofuran induces gradient decomposition toward an inorganic-organic bilayer SEI with high Na+ mobility, composition homogeneity, and mechanical robustness. As such, a record-high Coulombic efficiency beyond 99.9% is achieved even at -40 °C. The as-constructed AFSMBs sustain 300 cycles with 80% capacity maintained, and a 0.5-Ah level pouch cell delivers 85% capacity over 180 cycles at -25 °C. This study affords new insights into electrolyte formulation for fast ionic conduction and superior Na reversibility at ultralow temperatures.

2.
Adv Mater ; 36(27): e2400937, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38634714

RESUMO

Alkali metal-air batteries (AMABs) promise ultrahigh gravimetric energy densities, while the inherent poor cycle stability hinders their practical application. To address this challenge, most previous efforts are devoted to advancing the air cathodes with high electrocatalytic activity. Recent studies have underlined the solid-liquid-gas triple-phase interface around the anode can play far more significant roles than previously acknowledged by the scientific community. Besides the bottlenecks of uncontrollable dendrite growth and gas evolution in conventional alkali metal batteries, the corrosive gases, intermediate oxygen species, and redox mediators in AMABs cause more severe anode corrosion and structural collapse, posing greater challenges to the stabilization of the anode triple-phase interface. This work aims to provide a timely perspective on the anode interface engineering for durable AMABs. Taking the Li-air battery as a typical example, this critical review shows the latest developed anode stabilization strategies, including formulating electrolytes to build protective interphases, fabricating advanced anodes to improve their anti-corrosion capability, and designing functional separator to shield the corrosive species. Finally, the remaining scientific and technical issues from the prospects of anode interface engineering are highlighted, particularly materials system engineering, for the practical use of AMABs.

3.
Adv Mater ; 36(17): e2312161, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38191004

RESUMO

The reversible and durable operation of sodium metal batteries at low temperatures (LT) is essential for cold-climate applications but is plagued by dendritic Na plating and unstable solid-electrolyte interphase (SEI). Current Coulombic efficiencies of sodium plating/stripping at LT fall far below 99.9%, representing a significant performance gap yet to be filled. Here, the solvation structure of the conventional 1 m NaPF6 in diglyme electrolyte by facile cyclic ether (1,3-dioxolane, DOL) dilution is efficiently reconfigured. DOL diluents help shield the Na+-PF6 - Coulombic interaction and intermolecular forces of diglyme, leading to anomalously high Na+-ion conductivity. Besides, DOL participates in the solvation sheath and weakens the chelation of Na+ by diglyme for facilitated desolvation. More importantly, it promotes concentrated electron cloud distribution around PF6 - in the solvates and promotes their preferential decomposition. A desired inorganic-rich SEI is generated with compositional uniformity, high ionic conductivity, and high Young's modulus. Consequently, a record-high Coulombic efficiency over 99.9% is achieved at an ultralow temperature of -55 °C, and a 1 Ah capacity pouch cell of initial anode-free sodium metal battery retains 95% of the first discharge capacity over 100 cycles at -25 °C. This study thus provides new insights for formulating electrolytes toward increased Na reversibility at LT.

4.
J Cell Biol ; 222(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37906052

RESUMO

Enterovirus 71 (EV71) and Coxsackie A16 (CVA16) are two major causative agents of hand, foot, and mouth disease (HFMD) in young children. However, the mechanisms regulating the replication and pathogenesis of EV71/CVA16 remain incompletely understood. We performed a genome-wide CRISPR-Cas9 knockout screen and identified Ragulator as a mediator of EV71-induced apoptosis and pyroptosis. The Ragulator-Rag complex is required for EV71 and CVA16 replication. Upon infection, the Ragulator-Rag complex recruits viral 3D protein to the lysosomal surface through the interaction between 3D and RagB. Disruption of the lysosome-tethered Ragulator-Rag-3D complex significantly impairs the replication of EV71/CVA16. We discovered a novel EV71 inhibitor, ZHSI-1, which interacts with 3D and significantly reduces the lysosomal tethering of 3D. ZHSI-1 treatment significantly represses replication of EV71/CVA16 as well as virus-induced pyroptosis associated with viral pathogenesis. Importantly, ZHSI-1 treatment effectively protects against EV71 infection in neonatal and young mice. Thus, our study indicates that targeting lysosome-tethered Ragulator-Rag-3D may be an effective therapeutic strategy for HFMD.


Assuntos
Enterovirus Humano A , Doença de Mão, Pé e Boca , Proteínas não Estruturais Virais , Animais , Camundongos , Apoptose , Sistemas CRISPR-Cas , Enterovirus Humano A/genética , Lisossomos , Piroptose , Proteínas não Estruturais Virais/genética , Replicação Viral , Doença de Mão, Pé e Boca/virologia , Modelos Animais de Doenças
5.
Eur J Med Chem ; 258: 115616, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37413880

RESUMO

Interleukin-1 receptor-associated kinase 4 (IRAK4) is a key regulator to control downstream NF-κB and MAPK signals in the innate immune response and has been proposed as a therapeutic target for the treatment of inflammatory and autoimmune diseases. Herein, a series of IRAK4 inhibitors based on a dihydrofuro[2,3-b]pyridine scaffold was developed. Structural modifications of the screening hit 16 (IC50 = 243 nM) led to IRAK4 inhibitors with improved potency but high clearance (Cl) and poor oral bioavailability, as exemplified by compound 21 (IC50 = 6.2 nM, Cl = 43 ml/min/kg, F = 1.6%, LLE = 5.4). Structure modification aimed at improving LLE and reducing clearance identified compound 38. Compound 38 showed significantly improved clearance while maintained excellent biochemical potency against IRAK4 (IC50 = 7.3 nM, Cl = 12 ml/min/kg, F = 21%, LLE = 6.0). Importantly, compound 38 had favorable in vitro safety and ADME profiles. Furthermore, compound 38 reduced the in vitro production of pro-inflammatory cytokines in both mouse iBMDMs and human PBMCs and was orally efficacious in the inhibition of serum TNF-α secretion in LPS-induced mouse model. These findings suggested that compound 38 has development potential as an IRAK4 inhibitor for the treatment of inflammatory and autoimmune disorders.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Transdução de Sinais , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Citocinas , Piridinas/farmacologia
6.
Biochem Pharmacol ; 214: 115647, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315817

RESUMO

Nucleotide-binding oligomerization domain-containing protein 1 and 2 (NOD 1/2) are important cytosolic pattern recognition receptors that initiate host immune response. The dysregulation of NOD signaling is highly associated with inflammatory bowel disease (IBD) that needs novel treatment options. Receptor-interacting protein kinase 2 (RIPK2) is a critical mediator of NOD signaling and considered a promising therapeutic target for IBD treatment. However, there are currently no RIPK2 inhibitors available for clinical use. Here, we report the discovery and characterization of Zharp2-1 as a novel and potent RIPK2 inhibitor that effectively blocks RIPK2 kinase function and NOD-mediated NF-κB/MAPK activation in both human and mouse cell lines. Zharp2-1 exhibits significantly superior solubility compared to the non-prodrug form of the advanced RIPK2 inhibitor prodrug GSK2983559. The improved solubility combined with favorable in vitro metabolic stability translated to excellent in vivo pharmacokinetic profiles for Zharp2-1. In addition, Zharp2-1 demonstrates better effects than GSK2983559 in inhibiting the muramyl dipeptide (MDP)-induced production of pro-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs) and MDP-induced peritonitis in mice. Furthermore, Zharp2-1 markedly reduces Listeria monocytogenes infection-induced cytokines release in both human and mouse cells. Importantly, Zharp2-1 significantly ameliorates DNBS-induced colitis in rats and suppressed pro-inflammatory cytokine release in intestinal specimens from IBD patients. Collectively, our findings indicate that Zharp2-1 is a promising RIPK2 inhibitor with the potential to be further developed for IBD therapy.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Ratos , Animais , Leucócitos Mononucleares/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Transdução de Sinais , Citocinas/metabolismo
7.
Bioorg Chem ; 137: 106584, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37163814

RESUMO

Interleukin-1 receptor associated kinase-4 (IRAK4) has emerged as a therapeutic target for inflammatory and autoimmune diseases. Through reversing the amide of CA-4948 and computer aided structure-activity relationship (SAR) studies, a series of IRAK4 inhibitors with oxazolo[4,5-b]pyridine scaffold were identified. Compound 32 showed improved potency (IC50 = 43 nM) compared to CA-4948 (IC50 = 115 nM), but suffered from hERG inhibition (IC50 = 5.7 µM). Further optimization led to compound 42 with reduced inhibition of hERG (IC50 > 30 µM) and 13-fold higher activity (IC50 = 8.9 nM) than CA-4948. Importantly, compound 42 had favorable in vitro ADME and in vivo pharmacokinetic properties. Furthermore, compound 42 significantly reduced LPS-induced production of serum TNF-α and IL-6 cytokines in the mouse model. The overall profiles of compound 42 support it as a lead for the development of IRAK4 inhibitors for the treatment of inflammatory and autoimmune disorders.


Assuntos
Citocinas , Quinases Associadas a Receptores de Interleucina-1 , Animais , Camundongos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Lipopolissacarídeos/farmacologia , Síndrome de Resposta Inflamatória Sistêmica , Relação Estrutura-Atividade
8.
Materials (Basel) ; 16(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36837258

RESUMO

Efficient capture of CO2 and its conversion into other high value-added compounds by electrochemical methods is an effective way to reduce excess CO2 in the atmosphere. Porous polymeric materials hold great promise for selective adsorption and electrocatalytic reduction of CO2 due to their high specific surface area, tunable porosity, structural diversity, and chemical stability. Here, we review recent research advances in this field, including design of porous organic polymers (POPs), porous coordination polymers (PCPs), covalent organic frameworks (COFs), and functional nitrogen-containing polymers for capture and electrocatalytic reduction of CO2. In addition, key issues and prospects for the optimal design of porous polymers for future development are elucidated. This review is expected to shed new light on the development of advanced porous polymer electrocatalysts for efficient CO2 reduction.

9.
Blood ; 141(9): 1070-1086, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36356302

RESUMO

Intestinal epithelial cells (IECs) are implicated in the propagation of T-cell-mediated inflammatory diseases, including graft-versus-host disease (GVHD), but the underlying mechanism remains poorly defined. Here, we report that IECs require receptor-interacting protein kinase-3 (RIPK3) to drive both gastrointestinal (GI) tract and systemic GVHD after allogeneic hematopoietic stem cell transplantation. Selectively inhibiting RIPK3 in IECs markedly reduces GVHD in murine intestine and liver. IEC RIPK3 cooperates with RIPK1 to trigger mixed lineage kinase domain-like protein-independent production of T-cell-recruiting chemokines and major histocompatibility complex (MHC) class II molecules, which amplify and sustain alloreactive T-cell responses. Alloreactive T-cell-produced interferon gamma enhances this RIPK1/RIPK3 action in IECs through a JAK/STAT1-dependent mechanism, creating a feed-forward inflammatory cascade. RIPK1/RIPK3 forms a complex with JAK1 to promote STAT1 activation in IECs. The RIPK1/RIPK3-mediated inflammatory cascade of alloreactive T-cell responses results in intestinal tissue damage, converting the local inflammation into a systemic syndrome. Human patients with severe GVHD showed highly activated RIPK1 in the colon epithelium. Finally, we discover a selective and potent RIPK1 inhibitor (Zharp1-211) that significantly reduces JAK/STAT1-mediated expression of chemokines and MHC class II molecules in IECs, restores intestinal homeostasis, and arrests GVHD without compromising the graft-versus-leukemia (GVL) effect. Thus, targeting RIPK1/RIPK3 in IECs represents an effective nonimmunosuppressive strategy for GVHD treatment and potentially for other diseases involving GI tract inflammation.


Assuntos
Doença Enxerto-Hospedeiro , Intestinos , Camundongos , Humanos , Animais , Mucosa Intestinal/metabolismo , Inflamação/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/metabolismo , Homeostase , Proteína Serina-Treonina Quinases de Interação com Receptores
10.
Polymers (Basel) ; 14(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080527

RESUMO

Lithium metal batteries (LMBs) are promising next-generation battery technologies with high energy densities. However, lithium dendrite growth during charge/discharge results in severe safety issues and poor cycling performance, which hinders their wide applications. The rational design and application of functional polymer materials in LMBs are of crucial importance to boost their electrochemical performances, especially the cycling stability. In this review, recent advances of advanced polymer materials are examined for boosting the stability and cycle life of LMBs as different components including artificial solid electrolyte interface (SEI) and functional interlayers between the separator and lithium metal anode. Thereafter, the research progress in the design of advanced polymer electrolytes will be analyzed for LMBs. At last, the major challenges and key perspectives will be discussed for the future development of functional polymers in LMBs.

11.
Polymers (Basel) ; 14(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36015568

RESUMO

Lithium-metal batteries have attracted extensive research attention because of their high energy densities. Developing appropriate electrolytes compatible with lithium-metal anodes is of great significance to facilitate their practical application. Currently used electrolytes still face challenges of high production costs and unsatisfactory Coulombic efficiencies of lithium plating/stripping. In this research, we have developed a diluted electrolyte which is compatible with both lithium-metal anode and sulfurized polyacrylonitrile cathode. It presents a very high Li plating/stripping Coulombic efficiency of 99.3% over prolonged cycling, and the as-assembled anode-free Li-S battery maintains 71.5% of the initial specific capacity after 200 cycles at 0.1 A g-1. This work could shed light on designing a low-cost and high-performance liquid electrolyte for next-generation high-energy batteries.

12.
EMBO Rep ; 23(8): e54438, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35735238

RESUMO

Mixed lineage kinase domain-like protein (MLKL) is the terminal effector of necroptosis, a form of regulated necrosis. Optimal activation of necroptosis, which eliminates infected cells, is critical for antiviral host defense. MicroRNAs (miRNAs) regulate the expression of genes involved in various biological and pathological processes. However, the roles of miRNAs in necroptosis-associated host defense remain largely unknown. We screened a library of miRNAs and identified miR-324-5p as the most effective suppressor of necroptosis. MiR-324-5p downregulates human MLKL expression by specifically targeting the 3'UTR in a seed region-independent manner. In response to interferons (IFNs), miR-324-5p is downregulated via the JAK/STAT signaling pathway, which removes the posttranscriptional suppression of MLKL mRNA and facilitates the activation of necroptosis. In influenza A virus (IAV)-infected human primary macrophages, IFNs are induced, leading to the downregulation of miR-324-5p. MiR-324-5p overexpression attenuates IAV-associated necroptosis and enhances viral replication, whereas deletion of miR-324-5p potentiates necroptosis and suppresses viral replication. Hence, miR-324-5p negatively regulates necroptosis by manipulating MLKL expression, and its downregulation by IFNs orchestrates optimal activation of necroptosis in host antiviral defense.


Assuntos
Vírus da Influenza A , MicroRNAs , Antivirais , Humanos , Interferons , MicroRNAs/genética , MicroRNAs/metabolismo , Necroptose , Replicação Viral/fisiologia
13.
RSC Adv ; 12(20): 12590-12599, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35480379

RESUMO

A facile two-step strategy to prepare flexible graphene electrodes has been developed for supercapacitors using thermal reduction of graphene oxide (GO) and thermally reduced graphene oxide (TRGO) composite films. The tunable porous structure of the GO/TRGO film provided channels to release the high pressure generated by CO2 gas. The graphene electrode obtained from reduced-GO/TRGO (1 : 1 in mass ratio) film showed great flexibility and high film density (0.52 g cm-3). Using the EMI-BF4 electrolyte with a working voltage of 3.7 V, the as-fabricated free-standing reduced-GO/TRGO (1 : 1) film achieved a great gravimetric capacitance of 180 F g-1 (delivering a gravimetric energy density of 85.6 W h kg-1), a volumetric capacitance of 94 F cm-3 (delivering a volumetric energy density of 44.7 W h L-1), and a 92% retention after 10 000 charge/discharge cycles. In addition, the solid state flexible supercapacitor with the free-standing reduced-GO/TRGO (1 : 1) film as the electrodes and the EMI-BF4/poly (vinylidene fluoride hexafluopropylene) (PVDF-HFP) gel as the electrolyte also demonstrated a high gravimetric capacitance of 146 F g-1 with excellent mechanical flexibility, bending stability, and electrochemical stability. The strategy developed in this study provides great potentials for the synthesis of flexible graphene electrodes for supercapacitors.

14.
RSC Adv ; 11(54): 34152-34159, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35497287

RESUMO

In this work, we synthesized micro-mesoporous graphene1-x (MoS2) x with different compositional ratios via co-reduction of graphite oxide and exfoliated MoS2 platelets. We systematically studied the performance of the micro-mesoporous graphene1-x (MoS2) x as anodes in lithium-ion batteries and sodium-ion batteries. The results show that the specific surface areas of the composites decrease with introducing MoS2. The irreversible capacitance, which is related to the formation of solid electrolyte interphases, also decreases. Besides specific surface area, we found that micropores can benefit the lithiation and sodiation. We demonstrated that a specific charge capacity of 1319.02 mA h g-1 can be achieved at the 50th cycle for the graphene½(MoS2)½ anode in lithium-ion batteries. Possible relationships between such a high specific capacity and the micro-mesoporous structure of the graphene1-x (MoS2) x anode are discussed. This work may shed light on a general strategy for the structural design of electrode materials in lithium-ion batteries and sodium-ion batteries.

15.
Front Cell Dev Biol ; 8: 606119, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364238

RESUMO

Necroptosis is a form of regulated necrosis that requires the activation of receptor-interacting kinase 3 (RIPK3 or RIP3) and its phosphorylation of the substrate MLKL (mixed lineage kinase domain-like protein). Necroptosis has emerged as important cell death involved in the pathogenesis of various diseases including inflammatory diseases, degenerative diseases, and cancer. Here, we discovered a small molecule Zharp-99 as a potent inhibitor of necroptosis through blocking the kinase activity of RIPK3. Zharp-99 efficiently blocks necroptosis induced by ligands of the death receptor and Toll-like receptor as well as viral infection in human, rat and mouse cells. Zharp-99 strongly inhibits cellular activation of RIPK3, and MLKL upon necroptosis stimuli. Zharp-99 directly blocks the kinase activity of RIPK3 without affecting RIPK1 kinase activity at the tested concentration. Importantly, Zharp-99 exerts effective protection against TNF-α induced systemic inflammatory response syndrome in the mouse model. Zharp-99 displays favorable in vitro safety profiles and in vivo pharmacokinetic parameters. Thus, our study demonstrates Zharp-99 as a potent inhibitor of RIPK3 kinase and also highlights its potential for further development of new approaches for treating necroptosis-associated inflammatory disorders.

16.
Nanoscale ; 12(24): 12849-12855, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32519710

RESUMO

The high-performance silicon (Si) composite electrodes are being widely developed due to their considerable theoretical capacity. Coating with carbon-based materials is an efficient way to solve the common issues of Si-based materials. Currently, most of the reported strategies are complicated, pollutive, or uneconomic, which hamper their practical applications. Herein, a honeycomb-like Si-based composite was prepared to address these issues via a facile and green reduction approach at room temperature. The pre-anchored Si nanoparticles could be packed and interconnected through a three-dimensional graphene network to further enhance the electrochemical properties of the active materials. As an electrode, this composite shows good rate capabilities upon lithium storage and cycling stability. The continued cycling measurement delivers a -0.049% capacity decay rate per cycle within 600 cycles. A direct comparison further exhibits the obviously improved performance between the as-designed Si-based composite and naked Si, suggesting a potential application of this convenient strategy for other high-performance electrode materials.

17.
Front Cell Dev Biol ; 8: 290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411707

RESUMO

Renal cell carcinoma (RCC) is the most common type of kidney cancer. It has a poor prognosis, with approximately 20-30% of patients developing recurrent and/or metastatic diseases that is relatively high resistant to conventional therapy. Resisting cell death is a hallmark of cancer cells. Apoptosis is a form of programmed cell death mediated by the activation of caspases. Necroptosis is a form of regulated necrosis that relies on the activation of receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like protein (MLKL), the substrate of RIPK3. Cancer cells often display apoptosis resistance via upregulation of anti-apoptotic genes and defective necroptosis due to the epigenetic silence of Ripk3. MicroRNAs (miRNAs) are non-coding small RNAs that are involved in numerous biological processes including cell proliferation, differentiation and death. In this study, we screened a set of ∼120 miRNAs for apoptosis-regulating miRNAs and identified miR-381-3p as a suppressor of TNF-induced apoptosis in various cancer cells. Ectopic expression of miR-381-3p inhibits the activation of caspase-8 and caspase-3. The expression level of miR-381-3p inversely correlates with the sensitivity of cancer cells to TNF-induced apoptosis. Moreover, we found that overexpression of miR-381-3p blocks TNF-induced necroptosis by inhibiting the activation of RIPK3 and MLKL. Of note, Kaplan-Meier Plotter analysis demonstrates that papillary RCC patients with high miR-381-3p expression have a lower overall survival than those with low expression level of miR-381-3p. Importantly, miR-381-3p overexpression promotes colony formation in human renal cancer cells. Thus, miR-381-3p acts as an oncogenic miRNA that counteracts both apoptotic and necroptotic signaling pathways. Our findings highlight miR-381-3p as a biomarker for predicting sensitivity to apoptosis and necroptosis, and as a possible therapeutic target for RCC.

18.
Apoptosis ; 25(5-6): 441-455, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32418059

RESUMO

Smac/Diablo is a pro-apoptotic protein via interaction with inhibitors of apoptosis proteins (IAPs) to relieve their inhibition of caspases. Smac mimetic compounds (also known as antagonists of IAPs) mimic the function of Smac/Diablo and sensitize cancer cells to TNF-induced apoptosis. However, the majority of cancer cells are resistant to Smac mimetic alone. Doxorubicin is a widely used chemotherapeutic drug and causes adverse effect of cardiotoxicity in many patients. Therefore, it is important to find strategies of combined chemotherapy to increase chemosensitivity and reduce the adverse effects. Here, we report that doxorubicin synergizes with Smac mimetic to trigger TNF-mediated apoptosis, which is mechanistically distinct from doxorubicin-induced cell death. Doxorubicin sensitizes cancer cells including human pancreatic and colorectal cancer cells to Smac mimetic treatment. The combined treatment leads to synergistic induction of TNFα to initiate apoptosis through activating NF-κB and c-Jun signaling pathways. Knockdown of caspase-8 or knockout of FADD significantly blocked apoptosis synergistically induced by Smac mimetic and doxorubicin, but had no effect on cell death caused by doxorubicin alone. Moreover, Smac mimetic and doxorubicin-induced apoptosis requires receptor-interacting protein kinase 1 (RIPK1) and its deubiquitinating enzyme cylindromatosis (CYLD), not A20. These in vitro findings demonstrate that combination of Smac mimetic and doxorubicin synergistically triggers apoptosis through the TNF/CYLD/RIPK1/FADD/caspase-8 signaling pathway. Importantly, the combined treatment induced in vivo synergistic anti-tumor effects in the xenograft tumor model. Thus, the combined therapy using Smac mimetic and doxorubicin presents a promising apoptosis-inducing strategy with great potential for the development of anti-cancer therapy.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Materiais Biomiméticos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Enzima Desubiquitinante CYLD/genética , Doxorrubicina/farmacologia , Proteínas Mitocondriais/genética , Neoplasias Pancreáticas/tratamento farmacológico , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular Tumoral , Enzima Desubiquitinante CYLD/metabolismo , Sinergismo Farmacológico , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Nus , Proteínas Mitocondriais/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Análise de Sobrevida , Fator de Necrose Tumoral alfa/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
ACS Biomater Sci Eng ; 6(11): 6405-6414, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33449639

RESUMO

Bioimaging plays a key role in the diagnosis/treatment of diseases and in scientific research studies. Compared with single imaging techniques, dual-mode and multimode imaging techniques facilitate high accuracy. In this work, a perylene diimide (PDI)-based Gd-containing magnetic ionic liquid, Per-6-Diimi[Gd(NO3)4], is reported for dual-modal imaging, in which a Gd(III) complex was used for magnetic resonance imaging (MRI), while PDI was used for fluorescence imaging. Because of the difference in the biological microenvironment, there is a switch between dispersed and aggregated states of Per-6-Diimi[Gd(NO3)4] molecules in hydrophobic and hydrophilic media. When it was in the aqueous solution, the intensive π-π interaction of PDI cores made Per-6-Diimi[Gd(NO3)4] aggregates to form particles. The paramagnetic nanoparticles ensure prolonging the rotational correlation time, which results in a strong enhancement of MRI with a longitude relaxation coefficient of 14.94 mM-1 s-1. In an in vivo MRI experiment, the tumor site is imaged by MRI through the enhanced permeability and retention effect. However, when the molecule is present on the hydrophobic membrane of the cells, the dispersed Per-6-Diimi[Gd(NO3)4] showed good fluorescence imaging capabilities due to the high fluorescence quantum yield of PDI. Thus, the fluorescence imaging of cells can be carried out. Moreover, ex vivo fluorescence imaging of organs is performed after MRI. Per-6-Diimi[Gd(NO3)4] is enriched in the liver, kidneys, and tumors.


Assuntos
Líquidos Iônicos , Perileno , Meios de Contraste , Gadolínio , Imageamento por Ressonância Magnética
20.
BMC Microbiol ; 19(1): 274, 2019 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-31812160

RESUMO

BACKGROUND: HSV-1 is a common pathogen that infects 50-90% of the human population worldwide. HSV-1 causes numerous infection-related diseases, some of which are severely life-threatening. There are antiviral medications with activity against HSV-1. However, with the emergence of drug-resistant mutant strains of HSV-1, there is an urgent need to develop new effective anti-HSV-1 agents. METHODS: Therefore, we screened a chemical library of approximately 1500 compounds to identify inhibitors of HSV-1-induced toxicity for further drug development. Moreover, we performed several experiments, including western blot analysis, Q-PCR analysis and luciferase activity assay, to explore the antiviral mechanism of the candidates. RESULTS: Here, we identified a small molecule, mitoxantrone dihydrochloride, with potency against HSV-1-induced toxicity. Furthermore, the viral titers and expression levels of HSV-1 viral proteins were potently reduced by the presence of MD in many cell lines. Using Q-PCR analysis, we found that MD efficiently reduced the transcription of viral genes that are essential for DNA synthesis, namely, UL5, UL9, UL29, UL30, UL42 and UL52. Notably, MD also significantly inhibited the transcription of the immediate early genes ICP0, ICP22, ICP27 and ICP47, all of which are required for the expression of early and late viral gene products. Using immunofluorescence and western blot analysis, we found that the antiviral effect of MD was independent of the activation of the NF-κB and MAPK pathways. Furthermore, we found that the reduction in the transcription of viral immediate early genes was not related to the promoter activities of ICP0. CONCLUSIONS: Therefore, the identification of compound MD as an inhibitor of toxicity induced by HSV-1 highlights its potential use in the development of novel anti-HSV-1 drugs.


Assuntos
Antivirais/farmacologia , Genes Precoces , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/genética , Mitoxantrona/farmacologia , Animais , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Bibliotecas de Moléculas Pequenas , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA