Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hum Nutr Diet ; 37(5): 1361-1373, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38944880

RESUMO

BACKGROUND: Adequate nutritional knowledge and healthy dietary behaviours are essential for promoting rational nutrition for children. However, lack of nutritional knowledge and unhealthy dietary behaviours are common among Chinese children. Therefore, we developed a school-based nutrition education (NE) program to assess its impacts on nutritional knowledge and dietary behaviours in pupils. METHODS: In this trial, one school was assigned as an intervention group (n = 199) and the other two schools were designated as a control group (n = 140). Children in the intervention group received the NE program in addition to their regular health curriculum, whereas the control group continued with their usual health curriculum without any NE program materials. RESULTS: Concerning nutritional knowledge, the mean difference (follow-up minus baseline) of average knowledge scores in the intervention group was significantly higher than that in the control group (1.99 ± 3.22 vs. 0.66 ± 3.60, p = 0.001). However, subgroup analysis revealed that this difference disappeared among boys and students with malnutrition status. Regarding dietary behaviours, the NE program significantly increased the proportion of children exhibiting high frequencies of meat and nuts consumption in the intervention group, along with diverse food choice at breakfast. Additionally, it markedly reduced the proportion of children exhibiting high frequencies of sugar-sweetened beverages and fast food consumption. Structural equation modelling analyses indicated a significant direct effect of NE intervention on nutritional knowledge and an indirect effect on dietary behaviours. CONCLUSIONS: The NE program effectively enhanced nutritional knowledge scores and further improved dietary behaviours among Chinese primary school students. Future NE programs should pay more attention to boys and children with malnutrition.


Assuntos
Comportamento Alimentar , Educação em Saúde , Conhecimentos, Atitudes e Prática em Saúde , Estudantes , Humanos , Masculino , Feminino , China , Educação em Saúde/métodos , Criança , Estudantes/psicologia , Estudantes/estatística & dados numéricos , Comportamento Alimentar/psicologia , Instituições Acadêmicas , Serviços de Saúde Escolar , Dieta Saudável/psicologia , Dieta Saudável/estatística & dados numéricos , Dieta/métodos , Dieta/estatística & dados numéricos
2.
J Food Sci ; 89(5): 3064-3077, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38578136

RESUMO

Currently, Bifidobacterium, Lactobacillus, and Streptococcus thermophilus (BLS) are widely recognized as the crucially beneficial bacteria in the gut. Many preclinical and clinical studies have shown their protective effects against non-alcoholic fatty liver disease (NAFLD). However, whether gestational BLS supplementation could alleviate NAFLD in the offspring is still unknown. Kunming mice were given a high-fat diet (HFD) for 4 weeks before mating. They received BLS supplementation by gavage during pregnancy. After weaning, offspring mice were fed with a regular diet up to 5 weeks old. Gestational BLS supplementation significantly increased the abundance of Actinobacteriota, Bifidobacterium, and Faecalibaculum in the gut of dams exposed to HFD. In offspring mice exposed to maternal HFD, maternal BLS intake significantly decreased the ratio of Firmicutes to Bacteroidetes as well as the relative abundance of Prevotella and Streptococcus, but increased the relative abundance of Parabacteroides. In offspring mice, maternal BLS supplementation significantly decreased the hepatic triglyceride content and mitigated hepatic steatosis. Furthermore, maternal BLS supplementation increased the glutathione content and reduced malondialdehyde content in the liver. In addition, mRNA and protein expression levels of key rate-limiting enzymes in mitochondrial ß-oxidation (CPT1α, PPARα, and PGC1α) in the livers of offspring mice were significantly increased after gestational BLS supplementation. Thus, gestational BLS supplementation may ameliorate maternal HFD-induced steatosis and oxidative stress in the livers of offspring mice by modulating fatty acid ß-oxidation.


Assuntos
Bifidobacterium , Dieta Hiperlipídica , Ácidos Graxos , Microbioma Gastrointestinal , Lactobacillus , Oxirredução , Probióticos , Streptococcus thermophilus , Animais , Streptococcus thermophilus/metabolismo , Camundongos , Feminino , Gravidez , Probióticos/administração & dosagem , Probióticos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia , Suplementos Nutricionais , Masculino , Triglicerídeos/metabolismo
3.
Biomark Med ; 18(3): 123-135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38456353

RESUMO

Aims: To evaluate and compare lipid accumulation product (LAP) with alanine aminotransferase (ALT), aspartate aminotransferase (AST), visceral adiposity index (VAI) and triglyceride-glucose index (TyG) as biomarkers for hepatic steatosis and nonalcoholic fatty liver disease (NAFLD). Methods: LAP, ALT, AST, VAI and TyG were measured in 52 biopsy-proven NAFLD patients and 21 control subjects. Additionally, LAP was also measured in 448 ultrasound-proven NAFLD patients and 1009 control subjects. Results: LAP was positively associated with hepatic steatosis and inflammation in biopsy-proven NAFLD. The risk of NAFLD was positively related to LAP and TyG, but LAP showed a better area under the receiver operating characteristic curve for hepatic steatosis and NAFLD. LAP also performed well in recognizing ultrasound-proven NAFLD. Conclusion: LAP is an ideal biomarker of hepatic steatosis and NAFLD.


Assuntos
Produto da Acumulação Lipídica , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Inflamação/complicações , Triglicerídeos , Biomarcadores , Obesidade Abdominal , Fígado/diagnóstico por imagem
4.
Nutr Res Pract ; 17(6): 1084-1098, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053832

RESUMO

BACKGROUND/OBJECTIVES: Previous research has shown maternal betaine supplementation alleviates fetal-derived hepatic steatosis. Therefore, this study examined the anti-inflammatory effect of maternal betaine intake in offspring mice and its mechanism. MATERIALS/METHODS: Female C57BL/6J mice and their offspring were randomly divided into 3 groups according to the treatment received during gestation and lactation: control diet (CD), fatty liver disease (FLD), and fatty liver disease + 1% betaine (FLD-BET). The FLD group was given a high-fat diet and streptozotocin (HFD + STZ), and the FLD-BET group was treated with HFD + STZ + 1% betaine. After weaning, the offspring mice were given a normal diet for 5 weeks and then dissected to measure the relevant indexes. RESULTS: Compared to the CD group, the offspring mice in the FLD group revealed obvious hepatic steatosis and increased serum levels of alanine aminotransferase, interleukin (IL)-6, and tumor necrosis factor (TNF)-α; maternal betaine supplementation reversed these changes. The hepatic mRNA expression levels of IL-6, IL-18, and Caspase-1 were significantly higher in the FLD group than in the CD group. Maternal betaine supplementation reduced the expression of IL-1ß, IL-6, IL-18, and apoptosis-associated speck-like protein containing C-terminal caspase recruitment domain (ASC). Maternal betaine supplementation also reversed the increasing protein expressions of nitric oxide dioxygenase-like receptor family pyrin domain containing 3 (NLRP3), ASC, Caspase-1, IL-1ß, and IL-18 in offspring mice exposed to HFD + STZ. Maternal betaine supplementation decreased the homocysteine (Hcy) and s-adenosine homocysteine (SAH) levels significantly in the livers. Furthermore, the hepatic Hcy concentrations showed significant inverse relationships with the mRNA expression of TNF-α, NLRP3, ASC, and IL-18. The hepatic SAH concentration was inversely associated with the IL-1ß mRNA expression. CONCLUSIONS: The lipotropic and anti-inflammatory effect of maternal betaine supplementation may be associated with the inhibition of NLRP3 inflammasome in the livers of the offspring mice.

5.
Nutrients ; 15(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36678155

RESUMO

Maternal betaine supplementation has been proven to alleviate non-alcoholic fatty liver disease (NAFLD) in offspring caused by maternal high-fat diet (MHFD). The gut-liver axis plays an important role in NAFLD pathogenesis. However, whether maternal betaine supplementation can alleviate NAFLD in offspring by the gut-liver axis is unknown. C57BL/6J mice were fed with high-fat diet for 4 weeks before mating, and supplemented with 1% betaine during pregnancy and lactation. After weaning, offspring mice were fed with standard diet to 10 weeks. Maternal betaine supplementation reduced hepatic triglyceride content and alleviated hepatic steatosis in offspring mice exposed to MHFD. Furthermore, the mRNA expression of PPARα, CPT1α and FATP2 was increased and TNFα was reduced by maternal betaine supplementation. Maternal betaine intake decreased the relative abundances of Proteobateria, Desulfovibrio and Ruminococcus, but increased the relative abundances of Bacteroides and Parabacteroides. Moreover, maternal betaine intake increased the concentrations of short-chain fatty acids (SCFAs), including acetic acid, butyric acid and valeric acid, in the feces. Gut microbiota and SCFAs were significantly correlated with hepatic triglyceride content and expression of the above genes. Maternal betaine intake had no effect on other gut microbiota-related metabolites (bile acid and trimethylamine-n-oxide). Altogether, maternal betaine supplementation ameliorated MHFD-induced NAFLD possibly through regulating gut microbiota and SCFAs in offspring mice.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Gravidez , Feminino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Betaína/farmacologia , Betaína/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Suplementos Nutricionais , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA