Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(19): 25042-25052, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38706304

RESUMO

Electrical double-layer transistors (EDLTs) have received extensive research attention owing to their exciting advantages of low working voltage, high biocompatibility, and sensitive interfacial properties in ultrasensitive portable sensing applications. Therefore, it is of great interest to reduce photodetectors' operating voltage and power consumption by utilizing photo-EDLT. In this study, a series of block copolymers (BCPs) of poly(4-vinylpyridine)-block-poly(ethylene oxide) (P4VP-b-PEO) with different compositions were applied to formulate polyelectrolyte with indigo carmine salt in EDLT. Accordingly, PEO conduces ion conduction in the BCP electrolyte and enhances the carrier transport capability in the semiconducting channel; P4VP boosts the photocurrent by providing charge-trapping sites during light illumination. In addition, the severe aggregation of PEO is mitigated by forming a BCP structure with P4VP, enhancing the stability and photoresponse of the photo-EDLT. By optimizing the BCP composition, EDLT comprising P4VP16k-b-PEO5k and indigo carmine provides the highest specific detectivity of 2.1 × 107 Jones, along with ultralow power consumptions of 0.59 nW under 450 nm light illumination and 0.32 pW under dark state. The results indicate that photo-EDLT comprising the BCP electrolyte is a practical approach to reducing phototransistors' operating voltage and power consumption.

2.
Macromol Rapid Commun ; 44(5): e2200756, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36281923

RESUMO

Conjugated polymers are of great interest owing to their potential in stretchable electronics to function under complex deformation conditions. To improve the performance of conjugated polymers, various structural designs have been proposed and these conjugated polymers are specially applied in exotic optoelectronics. In this work, a series of all-conjugated block copolymers (PII2T-b-PNDI2T) comprising poly(isoindigo-bithiophene) (PII2T) and poly(naphthalenediimide-bithiophene) (PNDI2T) are developed with varied compositions and applied to electret-free phototransistor memory. Accordingly, these memory devices present p-type transport capability and electrical-ON/photo-OFF memory behavior. The efficacy of the all-conjugated block copolymer design in improving the memory-photoresponse properties in phototransistor memory is revealed. By optimizing the composition of the block copolymer, the corresponding device achieves a wide memory window of 36 V and a high memory ratio of 7 × 104 . Collectively, the results of this study indicate a new concept for designing electret-free phototransistor memory by using all-conjugated block copolymer heterojunctions to mitigate the phase separation of conjugated polymer blends. Meanwhile, the intrinsic optoelectronic properties of the constituent conjugated polymers can be well-maintained by using an all-conjugated block copolymer design.


Assuntos
Eletricidade , Eletrônica , Polímeros/química
3.
Polymers (Basel) ; 14(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559854

RESUMO

Supercritical carbon dioxide dyeing (SDD) as a dyeing media not only provides a friendly dyeing environment but also significantly increases polymeric dyeing performances ascribed to strong azo dye affinity. Disperse azo dyes have shown to be highly efficient dyeing agents due to their facile coupling synthesis, side chains position, and length tunability to optimize absorption properties. Herein, we first synthesize two series of disperse red azo dyes via a coupling chemical route. Further, we investigate the position of the electron withdrawing group and alkyl chains length impact onto the absorption and color fastness properties. Upon synthesis, 1H NMR and mass spectroscopy were used to characterize our newly synthesized series dye structure. Also, according to spectroscopic characterization, the functional group positions as well as the alkyl chains length have a major impact on the dye series maximum light absorption wavelength and performance. We have performed SDD dyeing of polyethylene terephthalate woven and determined each dye color fastness, we find that a reduced electron withdrawing effect and alkyl chains increase reduce color-fastness performances. Overall, our dyes exhibited a good resistance against detergent water, perspiration, abrasion, and friction.

4.
Polymers (Basel) ; 14(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298025

RESUMO

Following the 2020 COVID-19 worldwide outbreak, many countries adopted sanitary and safety measures to safeguard public health such as wearing medical face mask. While face masks became a necessity for people, disadvantages impede their long period wearing such as uncomfortable breathability and odor. The intermediate layer of the medical face mask is composed of porous non-woven fabric to block external particles while maintaining breathability. To overcome aforementioned limitation, this study uses electrospinning to design and fabricate odorless face masks via the use of aromatic oil. Eucalyptus essential oil is encapsulated through mixing and layer-by-layer by hydrophobic polyvinyl butyral and further used to fabricate the medical mask intermediate layer. We found that adding 0.2 g of eucalyptus into polyvinyl butyral fabric through mixing results in the deodorization rate of 80% after 2 h, with fabric thickness of 440.9 µm, and melt-blown non-woven fabric thickness of 981.7 µm. The Particle Filtration Efficiency of 98.3%, Bacterial Filtration Efficiency above 99.9%, and the differential pressure of 4.7 mm H2O/cm2 meet the CNS 14774 standard on medical face masks. Therefore, this study successfully proved that this type of masks' middle layer not only effectively protects against coronavirus, but also provides better scents and makes it more comfortable for consumers.

5.
Polymers (Basel) ; 14(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298044

RESUMO

In this study, we prepared three benzo[ghi]perylenetriimide (BPTI) conjugated molecules as electron-transporting surface-modifying layers for polymer solar cells (PSCs). These three BPTI derivatives differed in the nature of their terminal functionalities, featuring butylamine (C3NH2), propylammonium iodide (C3NH3I), and butyldimethylamine (C3DMA) units, respectively. We evaluated the optoelectronic properties of PTB7-Th: PC71BM blends modified with these interfacial layers, as well as the performance of resulting PSCs. We used UV-Vis spectroscopy, atomic force microscopy, surface energy analysis, ultraviolet photoelectron spectroscopy, and photoelectric flow measurements to examine the phenomena behind the changes in the optoelectronic behavior of these blend films. The presence of a BPTI derivative changed the energy band alignment at the ZnO-active layer interface, leading to the ZnO film behaving more efficiently as an electron-extraction electrode. Modifying the ZnO surface with the BPTI-C3NH3I derivative resulted in a best power conversion efficiency (PCE) of 10.2 ± 0.53% for the PTB7-Th:PC71BM PSC (cf. PCE of the control device of 9.1 ± 0.13%). In addition, modification of a PM6:Y6:PCBM PSC with the BPTI-C3NH3I derivative increased its PCE from 15.6 ± 0.25% to 16.5 ± 0.18%. Thus, BPTI derivatives appear to have potential as IFLs when developing high-performance PSCs, and might also be applicable in other optoelectronic devices.

6.
Polymers (Basel) ; 14(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893983

RESUMO

Supercritical carbon dioxide dyeing (SCDD) not only enables strong dyeing performance for a versatile range of polymer material but is also regarded as a green chemical media due to its low environmental impact as well as low risk of product denaturation. Over the decades, azo disperse dyes have been revealed to be efficient dyes and represent the wide majority of dyeing material. Azo dyes possess a wide variety of functional groups to optimize dye synthesis and tune the light absorption properties. Using SCDD, end-chain of different lengths, and functional group exhibiting various electronic affinity, six disperse red azo dyes were synthesized to investigate dyeing performances as woven fabric type, color strain, and color fastness after dyeing are discussed. Dye structure synthesized through a coupling reaction was confirmed by 1H NMR and mass spectroscopy. We found that the light absorption wavelength and absorption coefficient value variation are associated to the nature of the functional group. From the color strength values of the polyethylene terephthalate woven after dyeing, we find that the fiber host and dye dopant chemical structure greatly influence the dyeing process by providing enhanced woven, color strain, and color fastness. In comparison with commercial products, our approach not only improves the dyeing process but also guarantees a strong resistance of the dyed product against water, detergent, perspiration, abrasion, and friction.

7.
Nanomaterials (Basel) ; 12(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458086

RESUMO

With the advancement of portable optoelectronics, organic semiconductors have been attracting attention for their use in the sensing of white and near-infrared light. Ideally, an organic photodiode (OPD) should simultaneously display high responsivity and a high response frequency. In this study we used a ternary blend strategy to prepare PM6: BTP-eC9: PCBM-based OPDs with a broad bandwidth (350-950 nm), ultrahigh responsivity, and a high response frequency. We monitored the dark currents of the OPDs prepared at various PC71BM blend ratios and evaluated their blend film morphologies using optical microscopy, atomic force microscopy, and grazing-incidence wide-angle X-ray scattering. Optimization of the morphology and energy level alignment of the blend films resulted in the OPD prepared with a PM6:BTP-eC9:PC71BM ternary blend weight ratio of 1:1.2:0.5 displaying an extremely low dark current (3.27 × 10-9 A cm-2) under reverse bias at -1 V, with an ultrahigh cut-off frequency (610 kHz, at 530 nm), high responsivity (0.59 A W-1, at -1.5 V), and high detectivity (1.10 × 1013 Jones, under a reverse bias of -1 V at 860 nm). Furthermore, the rise and fall times of this OPD were rapid (114 and 110 ns), respectively.

8.
Polymers (Basel) ; 13(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916011

RESUMO

Human safety, health management, and disease transmission prevention have become crucial tasks in the present COVID-19 pandemic situation. Masks are widely available and create a safer and disease transmission-free environment. This study presents a facile method of fabricating masks through electrospinning nontoxic polyvinyl butyral (PVB) polymeric matrix with the antibacterial component Thymol, a natural phenol monoterpene. Based on the results of Japanese Industrial Standards and American Association of Textile Chemists and Colorists methods, the maximum antibacterial value of the mask against Gram-positive and Gram-negative bacteria was 5.6 and 6.4, respectively. Moreover, vertical electrospinning was performed to prepare Thymol/PVB nanofiber masks, and the effects of parameters on the submicron particulate filtration efficiency (PFE), differential pressure, and bacterial filtration efficiency (BFE) were determined. Thorough optimization of the small-diameter nanofiber-based antibacterial mask led to denser accumulation and improved PFE and pressure difference; the mask was thus noted to meet the present pandemic requirements. The as-developed nanofibrous masks have the antibacterial activity suggested by the National Standard of the Republic of China (CNS 14774) for general medical masks. Their BFE reaches 99.4%, with a pressure difference of <5 mmH2O/cm2. The mask can safeguard human health and promote a healthy environment.

9.
Polymers (Basel) ; 12(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271805

RESUMO

The development of nontoxic and biodegradable alginate-based materials has been a continual goal in biological applications. However, their hydrophilic nature and lack of spinnability impart water instability and poor mechanical strength to the nanofiber. To overcome these limitations, sodium alginate (SA) and waterborne polyurethane (WPU) were blended and crosslinked with calcium chloride; 30 wt % of SA exhibited good compatibility. Further addition of 10 wt % calcium chloride improved the water stability to an extremely humid region. Furthermore, the stress-strain curve revealed that the initial modulus and the elongation strength of the WPU/SA and WPU/CA blends increased with SA content, and the crosslinker concentration clearly indicated the dressing material hardness resulted from this simple blend strategy. The WPU/SA30 electrospun nanofibrous blend contained porous membranes; it exhibited good mechanical strength with water-stable, water-absorbable (37.5 wt %), and moisture-permeable (25.1 g/m2-24 h) characteristics, suggesting our cost-effective material could function as an effective wound dressing material.

10.
Polymers (Basel) ; 12(5)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380786

RESUMO

High-transparency soluble polyimide with COOH and fluorine functional groups and TiO2-SiO2 composite inorganic nanoparticles with high dielectric constants were synthesized in this study. The polyimide and inorganic composite nanoparticles were further applied in the preparation of organic-inorganic hybrid high dielectric materials as the gate dielectric for a stretchable transistor. The optimal ratio of organic and inorganic components in the hybrid films was investigated. In addition, Jeffamine D2000 and polyurethane were added to the gate dielectric to improve the tensile properties of the organic thin film transistor (OTFT) device. PffBT4T-2OD was used as the semiconductor layer material and indium gallium liquid alloy as the upper electrode. Electrical property analysis demonstrated that the mobility could reach 0.242 cm2·V-1·s-1 at an inorganic content of 30 wt.%, and the switching current ratio was 9.04 × 103. After Jeffamine D2000 and polyurethane additives were added, the mobility and switching current could be increased to 0.817 cm2·V-1·s-1 and 4.27 × 105 for Jeffamine D2000 and 0.562 cm2·V-1·s-1 and 2.04 × 105 for polyurethane, respectively. Additives also improved the respective mechanical properties. The stretching test indicated that the addition of polyurethane allowed the OTFT device to be stretched to 50%, and the electrical properties could be maintained after stretching 150 cycles.

11.
Nanotechnology ; 31(27): 274002, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32150735

RESUMO

Commercially available Jeffamines (polyetheramine) with average molecular weights of 2000 and 3000 g mol-1; one (M2005), two (D2000), and three (T3000) primary amino groups end-capping on the polyether backbone; and propylene oxide (PO) and ethylene oxide (EO) functionality were explored as additives for application in MAPbI3 perovskite solar cells (PSCs). The results indicated that the embedding of Jeffamine additives effectively passivates the defects in the grain boundaries of perovskite through the coordination bonding between the nitrogen atom and the uncoordinated lead ion of perovskite. We fabricated p-i-n PSC devices with the structure of glass/indium tin oxide (ITO)/NiOx/CH3NH3PbI3 (with and without Jeffamine)/PC61BM/BCP/Ag. We observed the interaction between the Jeffamine and perovskites. This interaction led to increased lifetimes of the carriers of perovskite, which enabled the construction of high-performance p-i-n PSCs. For the Jeffamine-D2000-derived device, we observed an increase in the power conversion efficiency from 14.5% to 16.8% relative to the control device. Furthermore, the mechanical properties of the perovskite films were studied. The interaction between the additive and perovskite reinforced the flexibility of the thin film, which may pave the way for stretchable optoelectronics.

12.
ACS Appl Mater Interfaces ; 9(33): 27853-27862, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28762269

RESUMO

In this study, a new hybrid electrode featuring a high gauge factor of >30, decent stretchability (100% of the original conductivity can be retained after 50 cycles of stretching under a 20% strain without prestrain treatment), high transmittance (>70%) across 400-900 nm, and a good sheet resistance (<50 Ω sq-1) was successfully exploited. These superior properties were revealed to originate from the reversible phase separation endowed by the nanogranular-like morphology formed in Ag. Owing to such discrete nanomorphology, the free volume within this Ag electrode is susceptible to the applied tensile strain and the ensuing change in conductivity enables the realization of an efficient strain sensor. Besides, a representative PTB7-th:PC71BM organic photovoltaic (OPV) using this electrode (with the assistance of a wrinkled scaffold to reinforce the stretchability of the active layer) can exhibit a power-conversion efficiency (PCE) of 6% along with high deformability, for which 75% of its original PCE is retained after 50 cycles of stretching under a 20% strain. Meanwhile, a representative all-polymer OPV consisting of a PTB7-th:N2200 blend, in which the N2200 has a better mechanical stretchability than that of PC71BM, can maintain over 96% of its original PCE after 50 cycles of stretching (under a 20% strain) without employing the wrinkled scaffold. Such promising performance in stretchable OPVs is among the state-of-the-art results reported to date.

13.
Polymers (Basel) ; 9(11)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30965936

RESUMO

In this study, chemical treatment (CT; oxidation⁻reduction method) and physical treatment (HP; hot-pressing methods) were applied to improve the performance of silver nanowire (AgNW)-derived electrodes on a glass or flexible polyethylene terephthalate (PET) substrate. The four-point probe method, UV-Vis spectroscopy and scanning electron microscopy (SEM) were used to measure the properties of AgNW electrodes and compare them with those of indium tin oxide (ITO) electrodes for exploring the possibility of using CT- and HP-based AgNW electrodes for polymer solar cell (PSC) applications. Using the CT or HP method, the sheet resistance of electrodes decreased to lower than 40 Ω sq-1 with an average high transmittance of more than 80%. Furthermore, HP reduced the surface roughness of AgNWs, which solved the inter-electrode short circuiting problem for devices. We studied the performance of poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) and zinc oxide-based PSC devices. The power conversion efficiency of HP-AgNW-derived poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl] (PTB7-Th):[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) devices was 7.83%, which was slightly lower than the performance of the device using ITO (8.03%) as a substrate. After a bend test (100 times) at a 2-cm curvature radius, the efficiency of AgNW/PET-derived PSCs was more than 70%. The performance of PSCs made with AgNWs and ITO electrodes is comparable, but the cost of using AgNWs for electrodes is much lower; therefore, HP-derived AgNWs demonstrate great potential for optoelectronic applications.

14.
Polymers (Basel) ; 9(4)2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30970816

RESUMO

Novel multifunctional switchable chemosensors based on fluorescent electrospun (ES) nanofibers with sensitivity toward magnetism, temperature, and mercury ions (Hg2+) were prepared using blends of poly(N-isopropylacrylamide)-co-(N-methylolacrylamide)-co-(Acrylic acid), the fluorescent probe 1-benzoyl-3-[2-(2-allyl-1,3-dioxo-2,3-dihydro-1Hbenzo[de]isoquinolin-6-ylamino)-ethyl]-thiourea (BNPTU), and magnetite nanoparticles (NPs), and a single-capillary spinneret. The moieties of N-isopropylacrylamide, N-methylolacrylamide, acrylic acid, BNPTU, and Iron oxide (Fe3O4) NPs were designed to provide thermoresponsiveness, chemical cross-linking, Fe3O4 NPs dispersion, Hg2+ sensing, and magnetism, respectively. The prepared nanofibers exhibited ultrasensitivity to Hg2+ (as low as 10-3 M) because of an 80-nm blueshift of the emission maximum (from green to blue) and 1.6-fold enhancement of the emission intensity, as well as substantial volume (or hydrophilic to hydrophobic) changes between 30 and 60 °C, attributed to the low critical solution temperature of the thermoresponsive N-isopropylacrylamide moiety. Such temperature-dependent variations in the presence of Hg2+ engendered distinct on⁻off switching of photoluminescence. The magnetic ES nanofibers can be collected using a magnet rather than being extracted through alternative methods. The results indicate that the prepared multifunctional fluorescent ES nanofibrous membranes can be used as naked eye sensors and have the potential for application in multifunctional environmental sensing devices for detecting metal ions, temperature, and magnetism as well as for water purification sensing filters.

15.
Polymers (Basel) ; 9(8)2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971016

RESUMO

In this study, we synthesized amphiphilic poly(2,7⁻(9,9⁻dioctylfluorene))⁻block⁻N,N⁻(diisopropylamino)ethyl methacrylate (POF⁻b⁻PDPMAEMA) rod-coil diblock copolymers by atom transfer radical polymerization (ATRP). The structure and multifunctional sensing properties of these copolymers were also investigated. The POF rod segment length of 10 was fixed and the PDPAEMA coil segment lengths of 90 and 197 were changed, respectively. The micellar aggregates of POF10⁻b⁻PDPAEMA90 rod-coil diblock copolymer in water showed a reversible shape transition from cylinder bundles to spheres when the temperature was changed from 20 to 80 °C or the pH was changed from 11 to 2. The atomic force microscopy (AFM) and transmission electron microscopy (TEM) measurements indicated that the temperature had also an obvious influence on the micelle size. In addition, since POF10⁻b⁻PDPAEMA90 had a lower critical solution temperature, its photoluminescence (PL) intensity in water is thermoreversible. The PL spectra showed that the POF⁻b⁻PDPAEMA copolymer had a reversible on/off profile at elevated temperatures, and thus could be used as an on/off fluorescent indicator for temperature or pH. The fluorescence intensity distribution of pH switched from "off⁻on" to "on⁻off" as the temperature increased. These results showed that the POF⁻b⁻PDPAEMA copolymer has a potential application for temperature and pH sensing materials.

16.
Nanoscale Res Lett ; 11(1): 488, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27822910

RESUMO

The organic material soluble polyimide (PI) and organic-inorganic hybrid PI-barium titanate (BaTiO3) nanoparticle dielectric materials (IBX, where X is the concentration of BaTiO3 nanoparticles in a PI matrix) were successfully synthesized through a sol-gel process. The effects of various BaTiO3 contents on the hybrid film performance and performance optimization were investigated. Furthermore, pentacene-based organic thin film transistors (OTFTs) with PI-BaTiO3/polymethylmethacrylate or cyclic olefin copolymer (COC)-modified gate dielectrics were fabricated and examined. The hybrid materials showed effective dispersion of BaTiO3 nanoparticles in the PI matrix and favorable thermal properties. X-ray diffraction patterns revealed that the BaTiO3 nanoparticles had a perovskite structure. The hybrid films exhibited high formability and planarity. The IBX hybrid dielectric films exhibited tunable insulating properties such as the dielectric constant value and capacitance in ranges of 4.0-8.6 and 9.2-17.5 nF cm-2, respectively. Adding the modified layer caused the decrease of dielectric constant values and capacitances. The modified dielectric layer without cross-linking displayed a hydrophobic surface. The electrical characteristics of the pentacene-based OTFTs were enhanced after the surface modification. The optimal condition for the dielectric layer was 10 wt% hybrid film with the COC-modified layer; moreover, the device exhibited a threshold voltage of 0.12 V, field-effect mobility of 4.32 × 10-1 cm2 V-1 s-1, and on/off current of 8.4 × 107.

17.
Nanoscale Res Lett ; 10(1): 446, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26577390

RESUMO

A two-dimensional nanostructure of molybdenum disulfide (MoS2) thin film exposed layered nanosheet was prepared by a low-temperature thermally reduced (TR) method on a fluorine-doped tin oxide (FTO) glass substrate as a platinum (Pt)-free and highly electrocatalytic counter electrode (CE) for dye-sensitized solar cells (DSSCs). Thermogravimetric analysis (TGA) results show that the MoS2 sulfidization temperature was approximately 300 °C. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) indicate that the stoichiometry and crystallization of MoS2 were more complete at higher temperatures; however, these temperatures reduce the number of edge-plane active sites in the short-range-order nanostructure. Accordingly, the DSSCs with 300 °C annealed TR-MoS2 CE exhibited an excellent photovoltaic conversion efficiency (PCE) of 6.351 %, up to 91.7 % of which is obtained using the conventional TD-Pt CE (PCE = 6.929 %). The temperature of thermal reaction and the molar ratio of reaction precursors were found to significantly influence the resulting stoichiometry and crystallization of MoS2 nanosheets, thus affecting DSSCs' performance.

18.
Nanoscale ; 6(19): 11403-10, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25148554

RESUMO

In this study we used solution-processable crystalline TiO2 nanoparticles as an interfacial modified layer between the active layer and aluminum cathode to fabricate CH3NH3PbI3/PCBM-based planar heterojunction perovskite photovoltaic (PPV) devices. We optimized the performance of the PPV device prepared without TiO2 by varying the preheating temperature of the indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) (PEDOT) substrate, obtaining a power conversion efficiency (PCE) of 6.3% under simulated AM 1.5 G irradiation (100 mW cm(-2)). After incorporating the TiO2 layer, we obtained a much higher PCE of 7.0%. The TiO2-containing PPV device exhibited extremely high stability (retaining ∼96% of its PCE after 1000 h) under long-term storage in a dark N2-filled glove box; the unencapsulated device retained approximately 80% of its original efficiency (T80) after 1 week under ambient conditions (ISOS-D-1; defined as 23 °C/50% RH). In contrast, the normal device was sensitive to ambient conditions with a value of T80 at only 3 h. We attributed the improved device performance (PCE, stability) to the enhanced electron transporting, hole blocking, and barrier properties arising from the presence of the TiO2 layer.

19.
Nanoscale ; 6(17): 10281-8, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25065461

RESUMO

In this paper, we describe relationships between the morphologies and the power conversion efficiencies (PCE) of perovskite photovoltaics having a conventional p-i-n heterojunction structure, indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS)/CH(3)NH(3)PbI(3-x)Cl(x)/PC(61)BM/Al. The PCE of such a device is highly dependent on the morphology of the perovskite film, which is governed by the concentrations of its precursors and the annealing conditions. A two-step annealing process allowed sufficient crystallization of the perovskite material, with a high coverage at a high precursor concentration. Relative to the device prepared using a one-step process (90 °C for 30 min), we observed a 60% increase in PCE for this optimized device. The corresponding devices exhibited extremely high stability after long-term storage (>1368 h) in the dark in a N2-filled glove box, with consistently high PCEs (AM 1.5 G, 100 mW cm(-2)) of up to 9.1%.

20.
J Nanosci Nanotechnol ; 10(8): 5354-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21125897

RESUMO

In this study, polythiophene based rod-coil block copolymers (P3HT)47-b-(PMSMA)34 are synthesized by atom transfer radical polymerization (ATRP). The effects of altering the mix of solvent and processing temperature on the morphologies and photophysical properties of the block copolymers in both solution and solid state are investigated. The chemical structure of the prepared block copolymers is confirmed by NMR and FTIR analysis. TEM results show that different morphologies of aggregates can be obtained by varying the toluene/methanol ratios. Such aggregation leads to a significant red shift on the optical absorption and photoluminescence spectra of the P3HT-b-PMSMA in mixed solvents. The results of AFM, UV-Vis, and PL show that the morphologies and photophysical properties of P3HT-b-PMSMA films are also significantly affected by the curing temperature. Blue shifts on the optical absorption and photoluminescence spectra are observed upon increasing the curing temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA