Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chromatogr A ; 1733: 465278, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39163702

RESUMO

Reversed-phase liquid chromatography (RPLC) represents an effective separation method, and is widely employed as the second dimension in most 2D-LC systems. Nevertheless, the solvent effect of the eluent from the first dimension on RPLC presents a challenge to the online coupling of RPLC with other separation modes, particularly normal phase liquid chromatography (NPLC). To address this issue, a comprehensive understanding of the solvent effect is essential. Following a comprehensive investigation into the influence of diverse solvents on RPLC separations, it was observed that alkane solvents, such as n-hexane, exhibited a pronounced tendency to be retained during RPLC separations. Such solvents do not affect the analysis of samples with weaker retention abilities than themselves, even when a large injection volume is used. The solvent effect was thus reduced by employing n-hexane-based solvent dilution. Leveraging the markedly enhanced solvent tolerance and extensive injection volume in RPLC, a versatile integration of the NPLC and RPLC was devised, necessitating merely a purge pump and a 10 port 2 position valve in conjunction with two sample loops. The novel 2D-LC system was then deployed for the analysis of propolis, a naturally occurring complex sample, and demonstrated remarkable separation efficiency.

2.
J Nat Med ; 78(4): 849-862, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38724866

RESUMO

In this study, 14 abietene and pimarene diterpenoids were isolated from the woods of Agathis dammara. Among them, 4 new compounds, dammarone A-C and dammaric acid A (1-4), were firstly reported, respectively. The structure of the new compounds was determined by HR ESI-MS and 1D/2D NMR spectroscopy, and their absolute configuration was determined by electronic circular dichroism (ECD) exciton chirality method. The hypoglycemic effect of all compounds was evaluated by transgenic zebrafish model, and the structure-activity relationship was discussed. Hinokione (7, HO) has low toxicity and significant hypoglycemic effects on zebrafish, the mechanism is mainly by promoting the differentiation of zebrafish pancreatic endocrine precursor cells (PEP cells) into ß cells, thereby promoting the regeneration of pancreatic ß cells.


Assuntos
Diterpenos , Hipoglicemiantes , Células Secretoras de Insulina , Regeneração , Peixe-Zebra , Animais , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Diterpenos/química , Diterpenos/farmacologia , Diterpenos/isolamento & purificação , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Estrutura Molecular , Regeneração/efeitos dos fármacos , Relação Estrutura-Atividade , Madeira/química , Animais Geneticamente Modificados , Thymelaeaceae/química
3.
Nat Prod Bioprospect ; 14(1): 23, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517590

RESUMO

In this study, two new kaurane diterpenes (16, 17), together with 12 lignans (1-12), a triterpene (15), and two other compounds (13, 14) were isolated from the woods of Agathis dammara. The structure of the new compound was determined by HR ESIMS and 1D/2D NMR spectroscopy, and its absolute configuration was determined by electronic circular dichroism (ECD) exciton chirality method. Compounds 5, 11, 14 exhibit significant hypoglycaemic activity in zebrafish, and their mechanism of action is to enhance glucose uptake in zebrafish.

4.
Eur J Pharmacol ; 960: 176116, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38059443

RESUMO

Cardiac fibrosis (CF) in response to persistent exogenous stimuli or myocardial injury results in cardiovascular diseases (CVDs). Protein tyrosine phosphatase 1B (PTP1B) can promote collagen deposition through regulating AMPK/TGF-ß/Smads signaling pathway, and PTP1B knockout improves cardiac dysfunction against overload-induced heart failure. Oleanolic acid (OA) has been proven to be an inhibitor of PTP1B, and its anti-cardiac remodeling effects have been validated in different mouse models. To improve the bioactivity of OA and to clarify whether OA derivatives with stronger inhibition of PTP1B activity have greater prevention of cardiac remodeling than OA, four new OA derivatives were synthesized and among them, we found that compound B had better effects than OA in inhibiting cardiac fibrosis both in vivo in the isoproterenol (ISO)-induced mouse cardiac fibrosis and in vitro in the TGF-ß/ISO-induced 3T3 cells. Combining with the results of molecular docking, surface plasmon resonance and PTP1B activity assay, we reported that OA and compound B directly bound to PTP1B and inhibited its activity, and that compound B showed comparable binding capability but stronger inhibitory effect on PTP1B activity than OA. Moreover, compound B presented much greater effects on AMPK activation and TGF-ß/Smads inhibition than OA. Taken together, OA derivative compound B more significantly alleviated cardiac fibrosis than OA through much greater inhibition of PTP1B activity and thus much stronger regulation of AMPK/TGF-ß/Smads signaling pathway.


Assuntos
Ácido Oleanólico , Fator de Crescimento Transformador beta , Animais , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais , Simulação de Acoplamento Molecular , Fibrose , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA