Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
2.
Int Immunopharmacol ; 130: 111797, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38442582

RESUMO

Cancer stem cells (CSCs) are known for their potent ability to drive tumor initiation and recurrence, yet the molecular mechanisms regulating CSCs are still unclear. Our study found a positive correlation between increased levels of miR-29a and better survival rates in early-stage breast cancer patients, but a negative correlation in late-stage patients, suggesting a dual function of miR-29a in regulating breast cancer. Furthermore, miR-29a showed significant downregulation in the ALDH+ breast cancer stem cell population compared to non-stem cancer cells. Overexpression of miR-29a in human breast cancer cells reduced the proportion of CSCs, suppressed their ability to form mammospheres, and inhibited the expression of stemness genes SOX2, KLF4, and hTERT in vitro. Conversely, knockdown of miR-29a in breast cancer cells showed opposite effects. Tumor xenograft experiments revealed that miR-29a overexpression significantly inhibited tumorigenesis initiated by MDA-MB-231 cell transplantation in nude mice. We further demonstrated that Krüppel-like factor 4 (KLF4), a key gene that regulates cell stemness, was a direct target of miR-29a in breast cancer cells. miR-29a suppressed the expression of KLF4 at both mRNA and protein levels. Reintroduction of KLF4 into breast cancer cells rescued the miR-29a-induced CSC suppression phenotype. In summary, our study is the first to demonstrate that miR-29a-KLF4 signaling inhibits breast tumor initiation by regulating CSCs, which provides novel therapeutic targets for preventing breast tumor initiation.


Assuntos
Neoplasias da Mama , Fator 4 Semelhante a Kruppel , MicroRNAs , Células-Tronco Neoplásicas , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Fator 4 Semelhante a Kruppel/metabolismo , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo
3.
Environ Toxicol ; 39(5): 2908-2926, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38299230

RESUMO

BACKGROUND: Colorectal cancer (CRC) presents a significant global health burden, characterized by a heterogeneous molecular landscape and various genetic and epigenetic alterations. Programmed cell death (PCD) plays a critical role in CRC, offering potential targets for therapy by regulating cell elimination processes that can suppress tumor growth or trigger cancer cell resistance. Understanding the complex interplay between PCD mechanisms and CRC pathogenesis is crucial. This study aims to construct a PCD-related prognostic signature in CRC using machine learning integration, enhancing the precision of CRC prognosis prediction. METHOD: We retrieved expression data and clinical information from the Cancer Genome Atlas and Gene Expression Omnibus (GEO) datasets. Fifteen forms of PCD were identified, and corresponding gene sets were compiled. Machine learning algorithms, including Lasso, Ridge, Enet, StepCox, survivalSVM, CoxBoost, SuperPC, plsRcox, random survival forest (RSF), and gradient boosting machine, were integrated for model construction. The models were validated using six GEO datasets, and the programmed cell death score (PCDS) was established. Further, the model's effectiveness was compared with 109 transcriptome-based CRC prognostic models. RESULT: Our integrated model successfully identified differentially expressed PCD-related genes and stratified CRC samples into four subtypes with distinct prognostic implications. The optimal combination of machine learning models, RSF + Ridge, showed superior performance compared with traditional methods. The PCDS effectively stratified patients into high-risk and low-risk groups, with significant survival differences. Further analysis revealed the prognostic relevance of immune cell types and pathways associated with CRC subtypes. The model also identified hub genes and drug sensitivities relevant to CRC prognosis. CONCLUSION: The current study highlights the potential of integrating machine learning models to enhance the prediction of CRC prognosis. The developed prognostic signature, which is related to PCD, holds promise for personalized and effective therapeutic interventions in CRC.


Assuntos
Apoptose , Neoplasias Colorretais , Humanos , Prognóstico , Aprendizado de Máquina , Neoplasias Colorretais/genética
4.
Oncogenesis ; 13(1): 4, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191593

RESUMO

The essential G1-cyclin, CCND1, is frequently overexpressed in cancer, contributing to tumorigenesis by driving cell-cycle progression. D-type cyclins are rate-limiting regulators of G1-S progression in mammalian cells via their ability to bind and activate CDK4 and CDK6. In addition, cyclin D1 conveys kinase-independent transcriptional functions of cyclin D1. Here we report that cyclin D1 associates with H2BS14 via an intrinsically disordered domain (IDD). The same region of cyclin D1 was necessary for the induction of aneuploidy, induction of the DNA damage response, cyclin D1-mediated recruitment into chromatin, and CIN gene transcription. In response to DNA damage H2BS14 phosphorylation occurs, resulting in co-localization with γH2AX in DNA damage foci. Cyclin D1 ChIP seq and γH2AX ChIP seq revealed ~14% overlap. As the cyclin D1 IDD functioned independently of the CDK activity to drive CIN, the IDD domain may provide a rationale new target to complement CDK-extinction strategies.

5.
Cell Mol Immunol ; 21(1): 80-90, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38082146

RESUMO

Regulatory T (Treg) cells play an essential role in maintaining immune balance across various physiological and pathological conditions. However, the mechanisms underlying Treg homeostasis remain incompletely understood. Here, we report that RIPK1 is crucial for Treg cell survival and homeostasis. We generated mice with Treg cell-specific ablation of Ripk1 and found that these mice developed fatal systemic autoimmunity due to a dramatic reduction in the Treg cell compartment caused by excessive cell death. Unlike conventional T cells, Treg cells with Ripk1 deficiency were only partially rescued from cell death by blocking FADD-dependent apoptosis. However, simultaneous removal of both Fadd and Ripk3 completely restored the homeostasis of Ripk1-deficient Treg cells by blocking two cell death pathways. Thus, our study highlights the critical role of RIPK1 in regulating Treg cell homeostasis by controlling both apoptosis and necroptosis, thereby providing novel insights into the mechanisms of Treg cell homeostasis.


Assuntos
Apoptose , Linfócitos T Reguladores , Animais , Camundongos , Morte Celular , Homeostase
6.
Cell Death Discov ; 9(1): 298, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582832

RESUMO

Nanomaterials have been well demonstrated to have the potential to be used for tumor cell-targeted drug delivery. Targeted inhibition of miR-221 was proved to promote the sensitivity of triple genitive breast cancer (TNBC) cells to chemo-drugs. In order to improve the chemotherapeutic effect in TNBC, herein, we developed a novel kind of nanoparticles shelled with PLGA and loaded with perfluoropentane (PFP), paclitaxel (PTX), and anti-miR-221 inhibitor, which was named PANP. Ultrasound-triggered vaporization of PFP in PANPs was utilized for real-time imaging track of the nanoparticles in vivo. In addition, macrophages were applied for the internalization of PANPs to form RAW-PANP with strong chemotaxis to accumulate around cancer cells. Nanoparticles with different contents did not cause M2 polarization compared with the control group but caused polarization toward M1. We compared the inherent tumor-homing behavior of macrophages containing different contents with that of normal macrophages and no significant abnormalities were observed. After injection into the tumor-burden mice, RAW-PANPs showed enrichment within tumor tissues. Upon the ultrasound cavitation-triggered burst, PTX was released in the tumor. Meanwhile, the release of anti-miR-221 improved the sensitivity of tumor cells to PTX. As a result, RAW-PANPs showed high efficiency in suppressing TNBC cell proliferation in vitro and inhibiting tumor growth and progression in vivo. The treatments did not induce liver, heart, or kidney injury. In conclusion, the current study not only developed a macrophage-carried, ultrasound-triggered, cancer cell-targeted chemotherapeutic system, but also demonstrated a miRNA-based technique to promote drug sensitivity of cancer cells, which holds strong potential to treat patients with TNBC, especially for those suffering drug-resistance. The innovation of this study is to use macrophages to deliver nanoparticles to the tumors and then use ultrasound locally to burst the nanoparticles to release the miRNA and PTX.

7.
Heliyon ; 9(8): e18704, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560648

RESUMO

Monitoring abnormal viscosity in biological systems is important for basic research and clinical applications. Fluorescence imaging technology is adaptable for the visualization of tumor tissues due to its comprehensive features. However, fluorescence detection of intracellular viscosity in clinical samples remains challenging. We developed a promising near-infrared fluorescent probe, M556, for viscosity measurement. M556, which targets mitochondria, was successfully applied to monitor the mitochondrial viscosity in living cells. Furthermore, M556 was demonstrated to effectively discriminate tumors from normal tissues in a mouse tumor model and in clinical specimens from breast cancer patients, thus indicating the potential perioperative use of this probe by clinicians to assist with biopsy procedures.

9.
Front Cell Infect Microbiol ; 13: 1190870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333844

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a lasting threat to public health. To minimize the viral spread, it is essential to develop more reliable approaches for early diagnosis of the infection and immediate suppression of the viral replication. Herein, through computational prediction of SARS-CoV-2 genome and screening analysis of specimens from covid-19 patients, we predicted 15 precursors for SARS-CoV-2-encoded miRNAs (CvmiRNAs) containing 20 mature CvmiRNAs, in which CvmiR-2 was successfully detected by quantitative analysis in both serum and nasal swab samples of patients. CvmiR-2 showed high specificity in distinguishing covid-19 patients from normal controls, and high conservation between SARS-CoV-2 and its mutants. A positive correlation was observed between the CvmiR-2 expression level and the severity of patients. The biogenesis and expression of CvmiR-2 were validated in the pre-CvmiR-2-transfected A549 cells, showing a dose-dependent pattern. The sequence of CvmiR-2 was validated by sequencing analysis of human cells infected by either SARS-CoV-2 or pre-CvmiR-2. Target gene prediction analysis suggested CvmiR-2 may be involved in the regulation of the immune response, muscle pain and/or neurological disorders in covid-19 patients. In conclusion, the current study identified a novel v-miRNA encoded by SARS-CoV-2 upon infection of human cells, which holds the potential to serve as a diagnostic biomarker or a therapeutic target in clinic.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Replicação Viral , Anticorpos Antivirais , Biomarcadores , Teste para COVID-19
10.
Theranostics ; 13(7): 2337-2349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153732

RESUMO

Emerging evidence has indicated the aberrant expression of PIWI-interacting RNAs (piRNAs) in human cancer cells to regulate tumor development and progression by governing cancer cell stemness. Herein, we identified downregulation of piR-2158 in human breast cancer tumors, especially in ALDH+ breast cancer stem cells (BCSCs) from patients and cell lines, which was further validated in two types of genetically engineered mouse models of breast cancer (MMTV-Wnt and MMTV-PyMT). Enforced overexpression of piR-2158 in basal-like or luminal subtypes of breast cancer cells suppressed cell proliferation, migration, epithelial-mesenchymal transition (EMT) and stemness in vitro. Administration of a dual mammary tumor-targeting piRNA delivery system in mice reduced tumor growth in vivo. RNA-seq, ChIP-seq and luciferase reporter assays demonstrated piR-2158 as a transcriptional repressor of IL11 by competing with AP-1 transcription factor subunit FOSL1 to bind the promoter of IL11. STAT3 signaling mediated piR-2158-IL11 regulation of cancer cell stemness and tumor growth. Moreover, by co-culturing of MDA-MB-231 and HUVECs in vitro and CD31 staining of tumor endothelial cells in vivo, we demonstrated inhibition of angiogenesis by piR-2158-IL11 in breast cancer. In conclusion, the current study not only reveals a novel mechanism through which piR-2158 inhibits mammary gland tumorigenesis via regulating cancer stem cells and tumor angiogenesis, but also provides a novel therapeutic strategy in treatment of breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/patologia , Interleucina-11/genética , Células Endoteliais/metabolismo , Transdução de Sinais , Mama/patologia , Fatores de Transcrição/metabolismo , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
12.
J Exp Clin Cancer Res ; 42(1): 93, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081505

RESUMO

Malignant breast cancer (BC) remains incurable mainly due to the cancer cell metastasis, which is mostly related to the status of Estrogen receptor alpha (ERα). However, our understanding of the mechanisms through which ERα regulates cancer cell metastasis remains limited. Here we identified a miR-29a-PTEN-AKT axis as a downstream signaling pathway of ERα governing breast cancer progression and metastasis. Two estrogen response element (ERE) half sites were identified in the promoter and enhancer regions of miR-29a, which mediated transcriptional regulation of miR-29a by ERα. Low level of miR-29a showed association with reduced metastasis and better survival in ERα+ luminal subtype of BC. In contrast, high level of miR-29a was detected in ERα- triple negative breast cancer (TNBC) in association with distant metastasis and poor survival. miR-29a overexpression in BC tumors increased the number of circulating tumor cells and promoted lung metastasis in mice. Targeted knockdown of miR-29a in TNBC cells in vitro or administration of a nanotechnology-based anti-miR-29a delivery in TNBC tumor-bearing mice in vivo suppressed cellular invasion, EMT and lung metastasis. PTEN was identified as a direct target of miR-29a, inducing EMT and metastasis via AKT signaling. A small molecular inhibitor of AKT attenuated miR-29a-induced EMT. These findings demonstrate a novel mechanism responsible for ERα-regulated breast cancer metastasis, and reveal the combination of ERα status and miR-29a levels as a new risk indicator in BC.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Feminino , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Pulmonares/genética , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células , Melanoma Maligno Cutâneo
13.
Cancers (Basel) ; 15(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36672487

RESUMO

Breast cancer is the most common cancer in women around the world. Emerging evidence has indicated the important roles that non-coding RNAs play in regulating tumor development and progression in breast cancer. Herein, we found a dual function of long non-coding RNA (LncRNA) CCAT2 in the luminal subtype of breast cancer, depending on its subcellular distribution. CCAT2 showed an overall downregulation in the tumor tissues from luminal breast cancer patients. Transient overexpression of CCAT2 in the luminal subtype of breast cancer cell MCF-7 or T47D significantly suppressed cell proliferation in vitro and inhibited tumor growth in vivo. Gene expression analysis of cancer stem cell markers including OCT4, NANOG, h-TERT, SOX2 and KLF4; flow cytometry analysis of breast cancer stem cell population, and mammosphere formation assay demonstrated inhibition of cancer cell stemness with transient transfection of CCAT2 in which exogenous CCAT2 mainly distributed in the cytoplasm and regulated miR-221-p27 signaling via RNA sequence interaction. However, overexpression of CCAT2 in MCF-7 cells through pMX retroviral nuclear expression vector accumulated CCAT2 in the nucleus, leading to upregulation of OCT4-PG1, a pseudogene of stem gene OCT4, thereby promoting the cancer cell stemness. In conclusion, the current study, for the first time, revealed a dual function of lncRNA CCAT2 as a tumor suppressor or oncogene depending upon its subcellular distribution. It also demonstrated the regulatory mechanism of cytoplasmic CCAT2 in suppressing tumorigenesis in the luminal subtype of breast cancer.

14.
Front Mol Biosci ; 9: 980841, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188229

RESUMO

Objective: Breast cancer (BC) is becoming the leading cause of cancer-related death in women all over the word. Identification of diagnostic biomarkers for early detection of BC is one of the most effective ways to reduce the mortality. Methods: Plasma samples from BC patients (n = 120) and normal controls (n = 50) were collected to determine the differentially expressed circulating miRNAs in BC patients. Binary logistic regression was applied to develop miRNA diagnostic models. Receiver operating characteristic (ROC) curves were applied to calculate the area under the curve (AUC). MMTV-PYMT mammary tumor mice were used to validate the expression change of those circulating miRNAs. Plasma samples from patients with other tumor types were collected to determine the specificity of the model in diagnosis of BC. Results: In the screening phase, 5 circulating miRNAs (miR-16, miR-17, miR-19b, miR-27a, and miR-106a) were identified as the most significantly upregulated miRNAs in plasma of BC patients. In consistence, the 5 miRNAs showed upregulation in the circulation of additional 80 BC patients in a tumor stage-dependent manner. Application of a tumor-burden mice model further confirmed upregulation of the 5 miRNAs in circulation. Based on these data, five models with diagnostic potential of BC were developed. Among the 5 miRNAs, miR-19b ranked at the top position with the highest specificity and the biggest contribution. In combination with miR-16 and miR-106a, a miR-19b-based 3-circulating miRNA model was selected as the best for further validation. Taken the samples together, the model showed 92% of sensitivity and 90% of specificity in diagnosis of BC. In addition, three other tumor types including prostate cancer, thyroid cancer and colorectal cancer further verified the specificity of the BC diagnostic model. Conclusion: The current study developed a miR-19b-based 3-miRNA model holding potential for diagnosis of BC using blood samples.

15.
Contrast Media Mol Imaging ; 2022: 7130533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36101800

RESUMO

Objective: To explore the clinical value of contrast-enhanced ultrasound combined with enhanced CT in the early diagnosis of primary hepatic carcinoma (PHC). Methods: 84 patients with suspected PHC in the early stage treated in our hospital from January 2020 to January 2022 were selected as the study subjects. All patients underwent contrast-enhanced ultrasound and enhanced CT examinations, and the surgery was performed for resection of lesions within 1 month. According to the results of postoperative pathology diagnosis, the benign group and the malignant group were included. The case data were viewed for the retrospective study to analyze the clinical application value by evaluating the diagnostic efficiency of contrast-enhanced ultrasound, enhanced CT, and their combination for PHC. Results: Among 84 suspected patients, 70 patients had PHC (malignant group) and 14 patients had other hepatic lesions (benign group) after postoperative histopathological examination. There was no significant difference in age, gender, clinical symptoms, and educational level between the two groups (P > 0.05), with obvious differences in the history of chronic hepatic disease, smoking, drinking, and infection of hepatitis B virus (HBV) between the two groups (P < 0.05). The enhancement time and regression time of the two groups were significantly different (P < 0.05), with no statistical difference in the enhancement pattern of photography (P > 0.05). For patients with PHC, the imaging features of the two inspection methods at arterial phase and lag phase were statistically different (P < 0.05). Taking pathologic findings as the gold standard, the accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of joint diagnosis were significantly higher than those of contrast-enhanced ultrasound and enhanced CT (P < 0.05), and the area under the curve of joint diagnosis was obviously larger than that of contrast-enhanced ultrasound and enhanced CT by placing the ROC curve for examination (P < 0.05). Conclusion: The combination of contrast-enhanced ultrasound and enhanced CT has a higher accuracy in the early diagnosis of PHC, and the diagnostic efficiency of contrast-enhanced ultrasound is higher than that of enhanced CT. In clinical practice, the physical condition and state of illness in patients should be fully considered, and the most suitable examination method should be selected to reduce their medical burden by taking into account their economic situation.


Assuntos
Carcinoma , Neoplasias Hepáticas , Meios de Contraste , Diagnóstico Precoce , Humanos , Neoplasias Hepáticas/diagnóstico , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
16.
J Transl Med ; 20(1): 267, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690861

RESUMO

Heart failure (HF), as the leading cause of death, is continuing to increase along with the aging of the general population all over the world. Identification of diagnostic biomarkers for early detection of HF is considered as the most effective way to reduce the risk and mortality. Herein, we collected plasma samples from HF patients (n = 40) before and after medical therapy to determine the change of circulating miRNAs through a quantitative real-time PCR (QRT-PCR)-based miRNA screening analysis. miR-30a-5p and miR-654-5p were identified as the most significantly changed miRNAs in the plasma of patients upon treatment. In consistence, miR-30a-5p showed upregulation and miR-654-5p showed downregulation in the circulation of 30 HF patients, compared to 15 normal controls in the training phase, from which a two-circulating miRNA model was developed for HF diagnosis. Next, we performed the model validation using an independent cohort including 50 HF patients and 30 controls. As high as 98.75% of sensitivity and 95.00% of specificity were achieved. A comparison between the miRNA model and NT-pro BNP in diagnostic accuracy of HF indicated an upward trend of the miRNA model. Moreover, change of the two miRNAs was further verified in association with the therapeutic effect of HF patients, in which miR-30a-5p showed decrease while miR-654-5p showed increase in the plasma of patients after LVAD implantation. In conclusion, the current study not only identified circulating miR-654-5p for the first time as a novel biomarker of HF, but also developed a novel 2-circulating miRNA model with promising potentials for diagnosis and prognosis of HF patients, and in association with therapeutic effects as well.


Assuntos
MicroRNA Circulante , Insuficiência Cardíaca , MicroRNAs , Biomarcadores , Biomarcadores Tumorais/genética , MicroRNA Circulante/genética , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Humanos , MicroRNAs/genética , Prognóstico
17.
Microb Genom ; 8(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731570

RESUMO

Emerging evidence has identified viral circular RNAs (circRNAs) in human cells infected by viruses, interfering with the immune system and inducing diseases including human cancer. However, the biogenesis and regulatory mechanisms of virus-encoded circRNAs in host cells remain unknown. In this study, we used the circRNA detection tool CIRI2 to systematically determine the virus-encoded circRNAs in virus-infected cancer cell lines and cancer patients, by analysing RNA-Seq datasets derived from RNase R-treated samples. Based on the thousands of viral circRNAs we identified, the biological characteristics and potential roles of viral circRNAs in regulating host cell function were determined. In addition, we developed a Viral-circRNA Database (http://www.hywanglab.cn/vcRNAdb/), which is open to all users to search, browse and download information on circRNAs encoded by viruses upon infection.


Assuntos
RNA Circular , Vírus , Linhagem Celular , Humanos , RNA/genética , RNA/metabolismo , RNA Circular/genética , Vírus/genética
19.
Cell Death Dis ; 13(4): 335, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35410320

RESUMO

During the lifetime of females, mammary epithelial cells undergo cyclical expansion and proliferation depending on the cyclical activation of mammary gland stem/progenitor cells (MaSCs) in response to the change of hormone level. The structural shrink of mammary duct tree and the functional loss of mammary gland occur along with inactivation of MaSCs in old females, even leading to breast cancer occasionally. However, the gene expression signature in MaSCs across the lifespan remains unclear. Herein, we tested the tissue regeneration ability of CD24+CD49fhigh MaSCs over six time points from neonatal (4-day-old) to aged mice (360-day-old). Further RNA-seq analyses identified four clusters of gene signatures based on the gene expression patterns. A subset of stemness-related genes was identified, showing the highest level at day 4 of the neonatal age, and the lowest level at the old age. We also identified an aging-related gene signature showing significant change in the old mice, in which an association between aging process and stemness loss was indicated. The aging-related gene signature showed regulation of cancer signaling pathways, as well as aging-related diseases including Huntington disease, Parkinson disease, and Alzheimer disease. Moreover, 425, 1056, 418, and 1107 gene variants were identified at D20, D40, D90, and D180, respectively, which were mostly reported to associated with tumorigenesis and metastasis in cancer. In summary, the current study is the first to demonstrate the gene expression shift in MaSCs from neonatal to aging, which leads to stemness loss, aging, aging-related diseases, and even breast cancer in old mice.


Assuntos
Glândulas Mamárias Animais , Transcriptoma , Animais , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Feminino , Glândulas Mamárias Animais/metabolismo , Camundongos , Células-Tronco/metabolismo , Transcriptoma/genética
20.
ACS Nano ; 15(12): 20020-20031, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34807565

RESUMO

Magnetic nanomotors (MNMs), powered by a magnetic field, are ideal platforms to achieve versatile biomedical applications in a collective and spatiotemporal fashion. Although the programmable swarm of MNMs that mimics the highly ordered behaviors of living creatures has been extensively studied at the microscale, it is of vital importance to manipulate MNM swarms at the nanoscale for on-demand tasks at the cellular level. In this work, a Cy5-tagged caspase-3-specific peptide-modified MNM is designed, and the adaptive control behaviors of MNM swarms are revealed in lysosomes to induce the cancer cell apoptosis under a rotating magnetic field (RMF). A magneto-programmed vortex is predicted to occur with swarms under RMF by the finite element method model and verified in vitro. According to the dynamic model and numerical simulation, the critical rotating frequency under which MNMs are out of step is strongly correlated to their assembling and swarming properties. The adaptivity of swarms maximizes the synchronous rotation to achieve an optimal energy conversion rate. The frequency-adapted controllability of MNM swarms for cancer cell apoptosis is observed in real time in vitro and in vivo. This work provides theoretical and experimental insights to adaptively control MNM swarms for cancer treatment.


Assuntos
Campos Magnéticos , Neoplasias , Simulação por Computador , Magnetismo , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA