Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS One ; 19(4): e0298194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625916

RESUMO

INTRODUCTION: Paeonia lactiflora contains diverse active constituents and exhibits various pharmacological activities. However, only partial identification of biologically active substances from P. lactiflora has been achieved using low-throughput techniques. Here, the roots of P. lactiflora, namely, Fenyunu (CK), Dafugui (DFG), and Red Charm (HSML), were studied. The primary and secondary metabolites were investigated using ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESIMS/MS). METHODS: The chemical compounds and categories were detected using broadly targeted UPLC-MS/MS. Principal component analysis (PCA), orthogonal partial least-squares discriminant analysis (OPLS-DA), and hierarchical clustering analysis (HCA) were carried out for metabolites of different varieties of P. lactiflora. RESULTS: A total of 1237 compounds were detected and classified into 11 categories. HCA, PCA, and OPLS-DA of these metabolites indicated that each variety of P. lactiflora was clearly separated from the other groups. Differential accumulated metabolite analysis revealed that the three P. lactiflora varieties contained 116 differentially activated metabolites (DAMs) involved in flavonoid, flavone, and flavonol metabolism. KEGG pathway analysis revealed that, in 65 pathways, 336 differentially abundant metabolites (DMs) were enriched in the CK and DFG groups; moreover, the type and content of terpenoids were greater in the CK group than in the DFG group. The CK and HSML groups contained 457 DMs enriched in 61 pathways; the type and amount of flavonoids, terpenoids, and tannins were greater in the CK group than in the HSML group. The DFG and HSML groups contained 497 DMs enriched in 65 pathways; terpenoids and alkaloids were more abundant in the HSML variety than in the DFG variety. CONCLUSIONS: A total of 1237 compounds were detected, and the results revealed significant differences among the three P. lactiflora varieties. Among the three P. lactiflora varieties, phenolic acids and flavonoids composed the largest and most diverse category of metabolites, and their contents varied greatly. Therefore, CK is suitable for medicinal plant varieties, and DFG and HSML are suitable for ornamental plant varieties. Twelve proanthocyanidin metabolites likely determined the differences in color among the three varieties.


Assuntos
Paeonia , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos , Flavonoides/química , Cromatografia Líquida de Alta Pressão/métodos , Terpenos/metabolismo
2.
Molecules ; 28(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959734

RESUMO

Two triple interpenetrating Zn(II)-based MOFs were studied in this paper. Named [Zn6(1,4-bpeb)4(IPA)6(H2O)]n (MOF-1) and {[Zn3(1,4-bpeb)1.5(DDBA)3]n·2DMF} (MOF-2), {1,4-bpeb = 1,4-bis [2-(4-pyridy1) ethenyl]benze, IPA = Isophthalic acid, DDBA = 3,3'-Azodibenzoic acid}, they were synthesized by the hydrothermal method and were characterized and stability tested. The results showed that MOF-1 had good acid-base stability and solvent stability. Furthermore, MOF-1 had excellent green fluorescence and with different phenomena in different solvents, which was almost completely quenched in acetone. Based on this phenomenon, an acetone sensing test was carried out, where the detection limit of acetone was calculated to be 0.00365% (volume ratio). Excitingly, the MOF-1 could also be used as a proportional fluorescent probe to specifically detect tryptophan, with a calculated detection limit of 34.84 µM. Furthermore, the mechanism was explained through energy transfer and competitive absorption (fluorescence resonance energy transfer (FRET)) and internal filtration effect (IFE). For antibacterial purposes, the minimum inhibitory concentrations of MOF-1 against Escherichia coli and Staphylococcus aureus were 19.52 µg/mL and 39.06 µg/mL, respectively, and the minimum inhibitory concentrations of MOF-2 against Escherichia coli and Staphylococcus aureus were 68.36 µg/mL and 136.72 µg/mL, respectively.


Assuntos
Acetona , Zinco , Zinco/farmacologia , Triptofano/farmacologia , Metais/farmacologia , Antibacterianos/farmacologia , Compostos Orgânicos/farmacologia , Solventes/farmacologia , Escherichia coli
3.
Molecules ; 28(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37764438

RESUMO

A reported water-stable Zn-MOF ([Zn(L)2(bpa)(H2O)2]·2H2O, H2L = 5-(2-cyanophenoxy) isophthalic acid has been prepared via a low-cost, general and efficient hydrothermal method. It is worth noting the structural features of Zn-MOF which exhibit the unsaturated metal site and the main non-covalent interactions including O⋯H, N⋯H and π-π stacking interactions, which lead to strong antibacterial and good tetracycline degradation ability. The average diameter of the Zn-MOF inhibition zone against Escherichia coli and Staphylococcus aureus was 12.22 mm and 10.10 mm, respectively. Further, the water-stable Zn-MOF can be employed as the effective photocatalyst for the photodegradation of tetracycline, achieving results of 67% within 50 min, and it has good cyclic stability. In addition, the photodegradation mechanism was studied using UV-vis diffuse reflection spectroscopy (UV-VIS DRS) and valence-band X-ray photoelectron spectroscopy (VB-XPS) combined with the ESR profile of Zn-MOF, which suggest that ·O2- is the main active species responsible for tetracycline photodegradation. Also, the photoelectric measurement results show that Zn-MOF has a good photocurrent generation performance under light. This provides us with a new perspective to investigate Zn-MOF materials as a suitable multifunctional platform for future environmental improvement applications.


Assuntos
Metais , Zinco , Antibacterianos/farmacologia , Tetraciclina/farmacologia , Escherichia coli , Água
4.
Plant Cell Physiol ; 64(8): 893-905, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37233621

RESUMO

Phosphorus (P) is a growth-limiting nutrient for plants, which is taken up by root tissue from the environment as inorganic phosphate (Pi). To maintain an appropriate status of cellular Pi, plants have developed sophisticated strategies to sense the Pi level and modulate their root system architecture (RSA) under the ever-changing growth conditions. However, the molecular basis underlying the mechanism remains elusive. Inositol polyphosphate kinase (IPK2) is a key enzyme in the inositol phosphate metabolism pathway, which catalyzes the phosphorylation of IP3 into IP5 by consuming ATP. In this study, the functions of a rice inositol polyphosphate kinase gene (OsIPK2) in plant Pi homeostasis and thus physiological response to Pi signal were characterized. As a biosynthetic gene for phytic acid in rice, overexpression of OsIPK2 led to distinct changes in inositol polyphosphate profiles and an excessive accumulation of Pi levels in transgenic rice under Pi-sufficient conditions. The inhibitory effects of OsIPK2 on root growth were alleviated by Pi-deficient treatment compared with wild-type plants, suggesting the involvement of OsIPK2 in the Pi-regulated reconstruction of RSA. In OsIPK2-overexpressing plants, the altered acid phosphatase (APase) activities and misregulation of Pi-starvation-induced (PSI) genes were observed in roots under different Pi supply conditions. Notably, the expression of OsIPK2 also altered the Pi homeostasis and RSA in transgenic Arabidopsis. Taken together, our findings demonstrate that OsIPK2 plays an important role in Pi homeostasis and RSA adjustment in response to different environmental Pi levels in plants.


Assuntos
Arabidopsis , Oryza , Polifosfatos/metabolismo , Oryza/metabolismo , Inositol/metabolismo , Fosfatos/metabolismo , Arabidopsis/genética , Homeostase , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Front Plant Sci ; 11: 596962, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281855

RESUMO

Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a global concern for wheat production. Spring wheat cultivar PI 197734, of Sweden origin, has shown high-temperature adult-plant resistance (APR) to stripe rust for many years. To map resistance quantitative trait loci (QTL), 178 doubled haploid lines were developed from a cross of PI 197734 with susceptible AvS. The DH lines and parents were tested in fields in 2017 and 2018 under natural infection of Pst and genotyped with genotyping by multiplexed sequencing (GMS). Kompetitive allele specific PCR (KASP) and simple sequence repeat (SSR) markers from specific chromosomal regions were also used to genotype the population to validate and saturate resistance QTL regions. Two major QTL on chromosomes 1AL and 3BL and one minor QTL on 2AL were identified. The two major QTL, QYrPI197734.wgp-1A and QYrPI197734.wgp-3B, were detected in all tested environments explaining up to 20.7 and 46.8% phenotypic variation, respectively. An awnletted gene mapped to the expected distal end of chromosome 5AL indicated the accuracy of linkage mapping. The KASP markers converted from the GMS-SNPs in the 1A and 3B QTL regions were used to genotype 95 US spring wheat cultivars and breeding lines, and they individually showed different percentages of polymorphisms. The haplotypes of the three markers for the 1A QTL and four markers for the 3B QTL identified 37.9 and 21.1% of the wheat cultivar/breeding lines possibly carrying these two QTL, indicating their usefulness in marker-assisted selection (MAS) for incorporating the two major QTL into new wheat cultivars.

6.
Phytopathology ; 108(1): 133-141, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28876207

RESUMO

Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen, is a dikaryotic, biotrophic, and macrocyclic fungus. Genetic study of P. striiformis f. sp. tritici virulence was not possible until the recent discovery of Berberis spp. and Mahonia spp. as alternate hosts. To determine inheritance of virulence and map virulence genes, a segregating population of 119 isolates was developed by self-fertilizing P. striiformis f. sp. tritici isolate 08-220 (race PSTv-11) on barberry leaves under controlled greenhouse conditions. The progeny isolates were phenotyped on a set of 29 wheat lines with single genes for race-specific resistance and genotyped with simple sequence repeat (SSR) markers, single nucleotide polymorphism (SNP) markers derived from secreted protein genes, and SNP markers from genotyping-by-sequencing (GBS). Using the GBS technique, 10,163 polymorphic GBS-SNP markers were identified. Clustering and principal component analysis grouped these markers into six genetic groups, and a genetic map, consisting of six linkage groups, was constructed with 805 markers. The six clusters or linkage groups resulting from these analyses indicated a haploid chromosome number of six in P. striiformis f. sp. tritici. Through virulence testing of the progeny isolates, the parental isolate was found to be homozygous for the avirulence loci corresponding to resistance genes Yr5, Yr10, Yr15, Yr24, Yr32, YrSP, YrTr1, Yr45, and Yr53 and homozygous for the virulence locus corresponding to resistance gene Yr41. Segregation was observed for virulence phenotypes in response to the remaining 19 single-gene lines. A single dominant gene or two dominant genes with different nonallelic gene interactions were identified for each of the segregating virulence phenotypes. Of 27 dominant virulence genes identified, 17 were mapped to two chromosomes. Markers tightly linked to some of the virulence loci may facilitate further studies to clone these genes. The virulence genes and their inheritance information are useful for understanding the host-pathogen interactions and for selecting effective resistance genes or gene combinations for developing stripe rust resistant wheat cultivars.


Assuntos
Basidiomycota/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Triticum/microbiologia , Basidiomycota/patogenicidade , Berberis/microbiologia , Mapeamento Cromossômico , Ligação Genética , Genótipo , Técnicas de Genotipagem , Mahonia/microbiologia , Repetições de Microssatélites/genética , Fenótipo , Folhas de Planta/microbiologia , Análise de Sequência de DNA , Virulência
7.
J Plant Res ; 130(3): 587-598, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28342111

RESUMO

Casein kinase II (CK2), an evolutionarily well-conserved Ser/Thr kinase, plays critical roles in all higher organisms including plants. CKB1 is a regulatory subunit beta of CK2. In this study, homozygous T-DNA mutants (ckb1-1 and ckb1-2) and over-expression plants (35S:CKB1-1, 35S:CKB1-2) of Arabidopsis thaliana were studied to understand the role of CKB1 in abiotic stress and gibberellic acid (GA) signaling. Histochemical staining showed that although CKB1 was expressed in all organs, it had a relatively higher expression in conducting tissues. The ckb1 mutants showed reduced sensitivity to abscisic acid (ABA) during seed germination and seedling growth. The increased stomatal aperture, leaf water loss and proline accumulation were observed in ckb1 mutants. In contrast, the ckb1 mutant had increased sensitivity to polyaluminum chloride during seed germination and hypocotyl elongation. We obtained opposite results in over-expression plants. The expression levels of a number of genes in the ABA and GA regulatory network had changed. This study demonstrates that CKB1 is an ABA signaling-related gene, which subsequently influences GA metabolism, and may play a positive role in ABA signaling.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Giberelinas/metabolismo , Transdução de Sinais , Estresse Fisiológico/genética , Ácido Abscísico/fisiologia , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , DNA Bacteriano , DNA de Plantas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação , Hipocótilo/crescimento & desenvolvimento , Mutação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Prolina/metabolismo , Plântula/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Água/fisiologia
8.
Physiol Mol Biol Plants ; 21(3): 359-364, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26261400

RESUMO

Okra is a widely distributed crop in the tropics, subtropics, and warmer areas of the temperate zones. Its major potential uses as a vegetable, oil and protein source, and source of paper pulp and fuel, or biomass are compatible. It is expected to have high value of exploitation and application. Due to the limited number of molecular studies focused on okras, the methods of morphological and ISSR markers were used to analysis the genetic diversity of 48 okras in the present study. The 22 primers were picked for ISSR-PCR, and a total of 154 fragments were amplified with an overall average polymorphism of 54.55 %. We used the 154 markers to construct the dendrogram based on the unweighted pair group method with arithmetic means (UPGMA). A high level of genetic diversity was found among 48 individuals. The 48 Okras was divided into four clusters at Dice's coefficient of 0.19 with clustering analysis. Based on these data of the genetic diversity, it will be possible to exploit the available resources of okra in more valuable ways.

9.
J Exp Bot ; 65(15): 4159-75, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24803505

RESUMO

Plastid casein kinase 2 (CK2) is a major Ser/Thr-specific enzyme for protein phosphorylation in the chloroplast stroma and its kinase activity is regulated by redox signals. To understand the role of CK2 phosphorylation of chloroplast proteins in abiotic stress signalling, an Arabidopsis plastid CK2 (CKA4) knockout mutant was investigated in terms of the plant response to abscisic acid (ABA) and heat stress. CKA4 expression was upregulated by ABA and heat treatment. The cka4 mutant showed reduced sensitivity to ABA during seed germination and seedling growth, and increased stomatal aperture and leaf water loss with a slightly reduced leaf ABA level. The cka4 mutant was more sensitive to heat stress than the wild-type Columbia-0. The expression levels of a number of genes in the ABA regulatory network were reduced in the cka4 mutant. Many heat-upregulated genes (heat-shock factors and heat-shock proteins) were also reduced in the cka4 mutant. The cka4 mutant showed reduced expression levels of plastid-encoded RNA polymerase target genes (atpB and psbA). CKA4 knockout mutation also resulted in a reduction in expression of some critical genes (PTM, ABI4, and PRS1) involved in retrograde signalling from the chloroplast to the nucleus. Similar results were observed in mutant plants with the knockout mutation in both CKA4 and CKA3, which encodes a nuclear CK2 α3 subunit. CKA3 expression was not responsive to ABA and heat stress. These results suggest that CKA4 is an enhancing factor in abiotic stress signalling through modulating the expression of some molecular players in retrograde signalling.


Assuntos
Ácido Abscísico/fisiologia , Arabidopsis/enzimologia , Caseína Quinase II/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Caseína Quinase II/genética , Técnicas de Inativação de Genes , Temperatura Alta , Malondialdeído/metabolismo , Estômatos de Plantas/fisiologia , Prolina/metabolismo , Água/fisiologia
10.
Mol Biol Rep ; 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24078097

RESUMO

AtGALK2 belongs to galactokinase of GHMP family in Arabidopsis thaliana. Two homozygous T-DNA insertion mutants (Atgalk2-1 and Atgalk2-2) of the AtGALK2 gene were identified. The AtGALK2 gene was highly expressed in flowers and roots, but less in stems, leaves and petioles. It was found that the expression of AtGALK2 gene was induced by NaCl and ABA. The two Atgalk2 mutants showed higher germination activity when treated with ABA and NaCl than wild type (Col-0). Through comparing the results of seed germination, root growth, stomatal aperture, water loss, and proline accumulation between the Atgalk2 mutants and Col-0, it was found that Atgalk2 mutants showed less sensitive to ABA than Col-0. The expression levels of ABI1, ABI2, RAB18, ABF3, RD22, RD29A, and RD29B in the Atgalk2 mutants were higher than in Col-0. However, the expression level of OST1 in the Atgalk2 mutants was lower than in Col-0. Taken together, these results suggested AtGALK2 was required for abscisic acid regulation of seed germination, root growth and gene expression, and was involved in salt and osmotic stress response in the early development stage. This study provides important clues to galactokinase activities of GHMP family in ABA signaling and plant development.

11.
Sci China Life Sci ; 55(6): 497-506, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22744179

RESUMO

The expression of FOA1 (F-box overexpressed/oppressed ABA signaling) in different organs of Arabidopsis, and in response to ABA and NaCl, was analyzed. The expression level of FOA1 is higher in the root and is lower in the stem, and is induced rapidly by ABA and NaCl. The phenotypes of T-DNA insertion mutant foa1 and FOA1 overexpression lines FOA1ox1 and FOA1ox2 were analyzed. The foa1 mutant exhibited a lower germination rate, shorter root length, more stomatal opening, increased proline accumulation and hypersensitivity to ABA compared with the wild type. In contrast, the overexpression lines showed lower sensitivity to ABA than the wild type. The expression levels of several ABA and stress-responsive transcription factors and genes were altered in the foa1 mutant in response to ABA. Compared with the wild type, the expression levels of ABA-responsive transcription factors were higher, but ABA and stress-responsive genes were lower in foa1 mutant. This study demonstrates that FOA1 is an ABA signaling-related gene, and may play a negative role in ABA signaling.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , DNA Bacteriano/genética , Proteínas F-Box/metabolismo , Perfilação da Expressão Gênica , Germinação/efeitos dos fármacos , Germinação/genética , Mutação , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Prolina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Cloreto de Sódio/farmacologia , Fatores de Tempo , Água/metabolismo
12.
Yao Xue Xue Bao ; 43(5): 443-9, 2008 May.
Artigo em Chinês | MEDLINE | ID: mdl-18717328

RESUMO

The current status and latest advances in new technique pseudophase biochromatography are reviewed. After brief introduction to the principle of new technique pseudophase biochromatography, the nature and various influence factors including the compositions, the types of new technique pseudophase biochromatography system are summarized in detail and the aspects of the future applications biochromatography in life science are described.


Assuntos
Biotecnologia/métodos , Cromatografia Capilar Eletrocinética Micelar/métodos , Eletroforese Capilar/métodos , Lipossomos , Animais , Cromatografia Líquida/métodos , Humanos , Bicamadas Lipídicas/química , Retinoides/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA