Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Sens ; 9(6): 2728-2776, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38828988

RESUMO

The escalating development and improvement of gas sensing ability in industrial equipment, or "machine olfactory", propels the evolution of gas sensors toward enhanced sensitivity, selectivity, stability, power efficiency, cost-effectiveness, and longevity. Two-dimensional (2D) materials, distinguished by their atomic-thin profile, expansive specific surface area, remarkable mechanical strength, and surface tunability, hold significant potential for addressing the intricate challenges in gas sensing. However, a comprehensive review of 2D materials-based gas sensors for specific industrial applications is absent. This review delves into the recent advances in this field and highlights the potential applications in industrial machine olfaction. The main content encompasses industrial scenario characteristics, fundamental classification, enhancement methods, underlying mechanisms, and diverse gas sensing applications. Additionally, the challenges associated with transitioning 2D material gas sensors from laboratory development to industrialization and commercialization are addressed, and future-looking viewpoints on the evolution of next-generation intelligent gas sensory systems in the industrial sector are prospected.


Assuntos
Gases , Gases/análise , Gases/química , Olfato , Indústrias , Odorantes/análise
2.
Adv Sci (Weinh) ; 11(13): e2307382, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240464

RESUMO

Heat dissipation performance is crucial for the operational reliability of industrial equipment, which can be monitored by detecting the wind or airflow temperature of the radiator. The emergence of triboelectric nanogenerators (TENGs) provides new routes for wind energy harvesting and self-powered sensing. Herein, a rotary wind-driven triboelectric nanogenerator (RW-TENG) with soft-contact working mode is newly designed to achieve tunable contact areas by utilizing the reliable thermal response of NiTi shape memory alloy (SMA) to air/wind temperature. The RW-TENG can generate different triboelectric outputs under air stimulation with different speeds or temperatures, which is demonstrated as a power source for online monitoring sensors, self-powered wind speed sensing, and airflow temperature monitoring. Specifically, a self-powered sensor of wind speed is demonstrated with a sensitivity of 0.526 µA m-1 s between 2.2 and 19.6 m s-1, and a self-powered monitoring device of high airflow temperature, which show relatively short response time (109 s), strong anti-interference ability and outstanding long-term durability. This study introduces an innovative route for real-time detection of airflow temperature in wind-cooled industrial equipment, showing broad application prospects for information perception and intelligent sensing of the industrial IoTs.

3.
Chem Asian J ; 18(24): e202300845, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37885350

RESUMO

The intrinsic lack of processability in the conventional nano/microcrystalline powder form of metal-organic frameworks (MOFs) greatly limits their application in various fields. Synthesis of MOFs with certain flowability make them promising for multitudinous applications. The direct synthesis strategy represents one of the simplest and efficient method for synthesizing solution processable MOF sols/suspensions, compared with other approaches, for instance, the post-synthesis surface modification, the direct dispersion of MOFs in hindered ionic liquids, as well as the calcination method toward a few MOFs with melting behavior. This article reviews the recent direct synthesis strategies of solution processable MOF sols and their typical applications in different fields. The direct synthesis strategies of MOF sols can be classified into two categories: particle size reduction strategy, and selective coordination strategy. The synthesis mechanism of different strategies and the factors affecting the formation of sols are summarized. The application of solution processable MOF sols in different fields are introduced, showing great application potentials. Furthermore, the challenges faced by the direct synthesis of MOF sols and the main methods to deal with the challenges are emphasized, and the future development trend is prospected.

4.
J Am Chem Soc ; 145(29): 15848-15858, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37436791

RESUMO

Membrane-based technologies can provide cost-effective and energy-efficient methods for various separation processes. The key goal is to develop materials with uniform, tunable, and well-defined subnanometer-scale channels. Suitable membrane materials should have high selectivity and permeance and can be manufactured in a robust and scalable fashion. Here, we report the construction of sub-1 nm intercrystalline channels with such characteristics and elucidate their transport properties. These channels are formed by assembling 3D aluminum formate crystals during the amorphous-to-crystalline transformation process. By controlling the transformation time, the channel size can be tuned from the macroscopic scale to nanometer scale. The resulting membranes exhibit tailored selectivity and permeance, with molecular weight cutoffs ranging from around 300 Da to approximately 650 Da, and ethanol permeance ranging from 0.8 to 22.0 L m-2 h-1 bar-1. We further show that liquid flow through these channels changes from viscosity-dominated continuum flow to subcontinuum flow, which can be described by a modified Hagen-Poiseuille model. Our strategy provides a new scalable platform for applications that commonly exploit nanoscale mass transport.

5.
ACS Sens ; 8(7): 2471-2492, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37368490

RESUMO

The demand for monitoring chemical and physical information surrounding, air quality, and disease diagnosis has propelled the development of devices for gas sensing that are capable of translating external stimuli into detectable signals. Metal-organic frameworks (MOFs), possessing particular physiochemical properties with designability in topology, specific surface area, pore size and/or geometry, potential functionalization, and host-guest interactions, reveal excellent development promises for manufacturing a variety of MOF-coated sensing devices for multitudinous applications including gas sensing. The past years have witnessed tremendous progress on the preparation of MOF-coated gas sensors with superior sensing performance, especially high sensitivity and selectivity. Although limited reviews have summarized different transduction mechanisms and applications of MOF-coated sensors, reviews summarizing the latest progress of MOF-coated devices under different working principles would be a good complement. Herein, we summarize the latest advances of several classes of MOF-based devices for gas sensing, i.e., chemiresistive sensors, capacitors, field-effect transistors (FETs) or Kelvin probes (KPs), electrochemical, and quartz crystal microbalance (QCM)-based sensors. The surface chemistry and structural characteristics were carefully associated with the sensing behaviors of relevant MOF-coated sensors. Finally, challenges and future prospects for long-term development and potentially practical application of MOF-coated sensing devices are pointed out.


Assuntos
Estruturas Metalorgânicas , Comércio
6.
Adv Mater ; 35(18): e2211859, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36852540

RESUMO

Metal-organic framework (MOF)-based membranes, featuring potential molecular sieving effects and therefore capable of surmounting the ubiquitous trade-off between membrane selectivity and permeability, hold great promise for multitudinous chemical separations. Nevertheless, it remains highly challenging for the large-area fabrication of ultrathin MOF membranes with variable thickness, great homogeneity, and preferential orientation. Herein, this work reports the facile fabrication of ultrathin (down to 20 nm) NUS-8 membranes in large-area (>200 cm2 ) yet with great homogeneity and texture along (00l) direction due to the superior solution processability of the as-synthesized NUS-8 nanosheets. The resultant NUS-8 membranes with good adhesion properties and certain flexibility exhibit excellent rejections (>98% for Mg2+ and Al3+ , and dyes with molecular weights larger than 585.5 g mol-1 ) toward aqueous separation of various metal ions and dyes at modest permeance (1-3.2 L m-2 h-1 bar-1 ) due to the well-aligned structures. Such separation performance outstands among polymetric membranes, thin-film composite membranes, mixed matrix membranes, and other MOF membranes reported in the literature. The separation mechanism is reasonably discussed based on the experimental and theoretical results. This study opens up novel perspectives for preparing ultrathin and large-area MOF membranes using the solution processability of MOFs.

7.
ACS Appl Mater Interfaces ; 14(34): 38594-38603, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35981928

RESUMO

Metallacages with suitable cavities and specific functions are promising delivery vectors in biological systems. Herein, we report a morpholine-functionalized metallacage for lysosome-targeted cell imaging. The efficient host-guest interactions between the metallacage and dyes prevent them from aggregation, so their emission in aqueous solutions is well maintained. The fluorescence quantum yield of these host-guest complexes reaches 74.40%. Therefore, the metallacage is further employed as a vector to deliver dyes with different emission colors (blue, green, and red) into lysosomes for targeted imaging. This research affords a type of vector for the delivery of various cargos toward biological applications, which will enrich the usage of metallacages in biomedical engineering.


Assuntos
Lisossomos , Morfolinas , Corantes/metabolismo , Diagnóstico por Imagem , Fluorescência , Corantes Fluorescentes/metabolismo , Lisossomos/metabolismo
8.
Angew Chem Int Ed Engl ; 61(34): e202207289, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35686675

RESUMO

We herein report the preparation of a series of hexaphenylbenzene (HPB)-based deep blue-emissive metallacages via multicomponent coordination-driven self-assembly. These metallacages feature prismatic structures with HPB derivatives as the faces and tetracarboxylic ligands as the pillars, as evidenced by NMR, mass spectrometry and X-ray diffraction analysis. Light-harvesting systems were further constructed by employing the metallacages as the donor and a naphthalimide derivative (NAP) as the acceptor, owing to their good spectral overlap. The judiciously chosen metallacage serves as the antenna, providing the suitable energy to excite the non-emissive NAP, and thus resulting in bright emission for NAP in the solid state. This study provides a type of HPB-based multicomponent emissive metallacage and explores their applications as energy donors to light up non-emissive fluorophores in the solid state, which will advance the development of emissive metallacages as useful luminescent materials.


Assuntos
Corantes Fluorescentes , Luminescência , Espectroscopia de Ressonância Magnética
9.
Chem Asian J ; 17(13): e202200129, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35472103

RESUMO

The realization of metal-organic framework (MOF) layers onto solid surfaces is a prerequisite for their integration into devices. This work reports the direct growth of Fe3+ /benzene di-carboxylate MOFs onto functionalized silicon surfaces, compatible with a wide range of MOF synthesis conditions. The co-nucleation and growth of different crystalline phases are evidenced, whose coverage depends on the surface chemistry and/or the solution composition. Three structural phases - the cubic MIL-101(Fe), a hexagonal phase with a structure close to MOF-235 and a MIL-53(Fe) with a monoclinic symmetry - are identified through characteristic crystal shapes and their structural parameters inferred from X-Ray Diffraction. In addition to the oriented growth of 3D crystallites, the formation of two-dimensional MIL-101 nano-crystallites or thin layers/islands exhibiting extended monocrystalline domains with (111) texture is also demonstrated through high-resolution atomic force microscopy. Post-synthesis treatments reveal a weak adhesion of the hexagonal phase, indicating a different surface anchoring.

10.
Adv Sci (Weinh) ; 9(6): e2104374, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34939370

RESUMO

The ever-increasing concerns over indoor/outdoor air quality, industrial gas leakage, food freshness, and medical diagnosis require miniaturized gas sensors with excellent sensitivity, selectivity, stability, low power consumption, cost-effectiveness, and long lifetime. Metal-organic frameworks (MOFs), featuring structural diversity, large specific surface area, controllable pore size/geometry, and host-guest interactions, hold great promises for fabricating various MOF-based devices for diverse applications including gas sensing. Tremendous progress has been made in the past decade on the fabrication of MOF-based sensors with elevated sensitivity and selectivity toward various analytes due to their preconcentrating and molecule-sieving effects. Although several reviews have recently summarized different aspects of this field, a comprehensive review focusing on MOF-based gas sensors is absent. In this review, the latest advance of MOF-based gas sensors relying on different transduction mechanisms, for example, chemiresistive, capacitive/impedimetric, field-effect transistor or Kelvin probe-based, mass-sensitive, and optical ones are comprehensively summarized. The latest progress for making large-area MOF films essential to the mass-production of relevant gas sensors is also included. The structural and compositional features of MOFs are intentionally correlated with the sensing performance. Challenges and opportunities for the further development and practical applications of MOF-based gas sensors are also given.


Assuntos
Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Gases/análise , Estruturas Metalorgânicas/química , Eletrônica
11.
J Am Chem Soc ; 143(42): 17716-17723, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34608802

RESUMO

Membrane technology is attractive for natural gas separation (removing CO2, H2O, and hydrocarbons from CH4) because of membranes' low energy consumption and small environmental footprint. Compared to polymeric membranes, microporous inorganic membranes such as silicoaluminophosphate-34 (SAPO-34) membrane can retain their separation performance under conditions close to industrial requirements. However, moisture and hydrocarbons in natural gas can be strongly adsorbed in the pores of those membranes, thereby reducing the membrane separation performance. Herein, we report the fabrication of a polycrystalline MIL-160 membrane on an Al2O3 substrate by in situ hydrothermal synthesis. The MIL-160 membrane with a thickness of ca. 3 µm shows a remarkable molecular sieving effect in gas separation. Besides, the pore size and environment of the MIL-160 membrane can be precisely controlled using reticular chemistry by regulating the size and functionality of the ligand. Interestingly, the more polar fluorine-functionalized multivariate MIL-160/CAU-10-F membrane exhibits a 10.7% increase in selectivity for CO2/CH4 separation and a 31.2% increase in CO2 permeance compared to those of the MIL-160 membrane. In addition, hydrophobic MIL-160 membranes and MIL-160/CAU-10-F membranes are more resistant to water vapor and hydrocarbons than the hydrophilic SAPO-34 membranes.

12.
Opt Express ; 29(12): 19084-19093, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154150

RESUMO

Infrared gas sensors hold great promise in the internet of things and artificial intelligence. Making infrared light sources with miniaturized size, reliable and tunable emission is essential but remains challenging. Herein, we present the tailorability of radiant power and the emergence of new emission wavelength of microelectromechanical system (MEMS)-based thermal emitters with nickel oxide (NiO) films. The coating of NiO on emitters increases top surface emissivity and induces the appearance of new wavelengths between 15 and 19 µm, all of which have been justified by spectroscopic methods. Furthermore, a sensor array is assembled for simultaneous monitoring of concentrations of carbon dioxide (CO2), methane (CH4), humidity, and temperature. The platform shows selective and sensitive detection at room temperature toward CO2 and CH4 with detection limits of around 50 and 1750 ppm, respectively, and also shows fast response/recovery and good recyclability. The demonstrated emission tailorability of MEMS emitters and their usage in sensor array provide novel insights for designing and fabricating optical sensors with good performance, which is promising for mass production and commercialization.

13.
Adv Mater ; 33(29): e2101257, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34057259

RESUMO

Metal-organic frameworks (MOFs) intrinsically lack fluidity and thus solution processability. Direct synthesis of MOFs exhibiting solution processability like polymers remains challenging but highly sought-after for multitudinous applications. Herein, a one-pot, surfactant-free, and scalable synthesis of highly stable MOF suspensions composed of exceptionally large (average area > 15 000 µm2 ) NUS-8 nanosheets with variable functionalities and excellent solution processability is presented. This is achieved by adding capping molecules during the synthesis, and by judicious controls of precursor concentration and MOF nanosheet-solvent interactions. The resulting 2D NUS-8 nanosheets with variable functionalities exhibit excellent solution processability. As such, relevant monoliths, aero- and xerogels, and large-area textured films with a great homogeneity, controllable thickness, and appreciable mechanical properties can be facilely fabricated. Additionally, from both the molecular- and chip-level it is demonstrated that capacitive sensors integrated with NUS-8 films functionalized with different terminal groups exhibit distinguishable sensing behaviors toward acetone due to their disparate host-guest interactions. It is envisioned that this simple approach will greatly facilitate the integration of MOFs in miniaturized electronic devices and benefit their mass production.

14.
Angew Chem Int Ed Engl ; 60(32): 17338-17343, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-33955661

RESUMO

Isoreticular functionalization is a well-elucidated strategy for pore environment tuning and the basis of gas separation performance in extended frameworks. The extension of this approach to discrete porous molecules such as metal-organic cages (MOCs) is conceptually straightforward but hindered by synthetic complications, especially stability concerns. We report the successful isoreticular functionalization of a zirconium MOC with tetrazole moiety by bottom-up synthesis. The title compound (ZrT-1-tetrazol) shows promising C2 H2 /CO2 and C2 H2 /C2 H4 separation performance, as demonstrated by adsorption isotherms, breakthrough experiments, and density functional theory calculations. The design analogy between MOFs and highly stable MOCs may guide the synthesis of novel porous materials for challenging separation applications.

15.
ACS Appl Mater Interfaces ; 12(32): 36715-36722, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32691586

RESUMO

Interfacial compatibility between metal-organic framework (MOF) films and the underlying substrates determines the integrity of MOF films and their associated functions, and thus it has been gaining growing attention. Herein, we present a comparison of adhesion properties at the chip level of two disparate nickel (Ni)-MOF films, respectively, obtained by direct hydro/solvothermal growth and template-directed conversion approaches. We demonstrate that the on-chip delamination/corrugation of the films obtained by the direct growth approach can be circumvented by adopting the template-directed approach, which enables delicate dissolution of primarily grown nanoflaked nickel hydroxide (Ni(OH)2) films and thus triggers the controllable formation of Ni-MOF films. Successful on-chip conversions of Ni(OH)2 layers to different Ni-MOF thin films with good homogeneity, compactness, and appreciable affinity to the substrates are verified by multiple microscopic and spectroscopic techniques. Notably, the resultant Ni-MOF films do not show delamination even after activation with additional treatments, such as solvent soaking, nitrogen (N2) blowing for 1 h, and scotch-tape tests. As a demonstration of the application of MOF films, a Ni-NDC (NDC stands for 2,6-naphthalenedicarboxylate) MOF-coated sensor exhibits selective detection toward benzene vapor. This study highlights the importance of interfaces between MOF films and substrates and provides new perspectives for integrating MOF films onto microelectronic devices with robust adhesion for practical applications.

16.
ACS Sens ; 5(5): 1474-1481, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32367715

RESUMO

State-of-the-art chemical sensors based on covalent organic frameworks (COFs) are restricted to the transduction mechanism relying on luminescence quenching and/or enhancement. Herein, we present an alternative methodology via a combination of in situ-grown COF films with interdigitated electrodes utilized for capacitive benzene detection. The resultant COF-based sensors exhibit highly sensitive and selective detection at room temperature toward benzene vapor over carbon dioxide, methane, and propane. Their benzene detection limit can reach 340 ppb, slightly inferior to those of the metal oxide semiconductor-based sensors, but with reduced power consumption and increased selectivity. Such a sensing behavior can be attributed to the large dielectric constant of the benzene molecule, distinctive adsorptivity of the chosen COF toward benzene, and structural distortion induced by the custom-made interaction pair, which is corroborated by sorption measurements and density functional theory (DFT) calculations. This study provides new perspectives for fabricating COF-based sensors with specific functionality targeted for selective gas detection.


Assuntos
Estruturas Metalorgânicas , Benzeno , Gases
17.
Angew Chem Int Ed Engl ; 59(27): 11003-11009, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32107860

RESUMO

We report an in situ polymerization strategy to incorporate a thermo-responsive polymer, poly(N-isopropylacrylamide) (PNIPAM), with controlled loadings into the cavity of a mesoporous metal-organic framework (MOF), MIL-101(Cr). The resulting MOF/polymer composites exhibit an unprecedented temperature-triggered water capture and release behavior originating from the thermo-responsive phase transition of the PNIPAM component. This result sheds light on the development of stimuli-responsive porous adsorbent materials for water capture and heat transfer applications under relatively mild operating conditions.

18.
ACS Sens ; 4(10): 2746-2753, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31524375

RESUMO

Infrared gas sensors have been proven promising for broad applications in Internet of Things and Industrial Internet of Things. However, the lack of miniaturized light sources with good compatibility and tunable spectral features hinders their widespread utilization. Herein, a strategy is proposed to increase the radiated power from microelectromechanical-based thermal emitters by coating with graphene oxide (GO). The radiation can be substantially enhanced, which partially stems from the high emissivity of GO coating demonstrated by spectroscopic methods. Moreover, the sp2 structure within GO may induce plasmons and thus couple with photons to produce blackbody radiation and/or new thermal emission sources. As a proof-of-concept demonstration, the GO-coated emitter is integrated into a multifunctional monitoring platform and evaluated for gas detection. The platform exhibits sensitive and highly selective detection toward CO2 at room temperature with a detection limit of 50 ppm and short response/recovery time, outperforming the state-of-the-art gas sensors. This study demonstrates the emission tailorability of thermal emitters and the feasibility of improving the associated gas sensing property, offering perspectives for designing and fabricating high-end optical sensors with cost-effectiveness and superior performance.


Assuntos
Dióxido de Carbono/análise , Grafite/química , Acetona/análise , Monóxido de Carbono/análise , Umidade , Raios Infravermelhos , Metano/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
19.
Angew Chem Int Ed Engl ; 58(40): 14089-14094, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31270915

RESUMO

Gas sensing technologies for smart cities require miniaturization, cost-effectiveness, low power consumption, and outstanding sensitivity and selectivity. On-chip, tailorable capacitive sensors integrated with metal-organic framework (MOF) films are presented, in which abundant coordinatively unsaturated metal sites are available for gas detection. The in situ growth of homogeneous Mg-MOF-74 films is realized with an appropriate metal-to-ligand ratio. The resultant sensors exhibit selective detection for benzene vapor and carbon dioxide (CO2 ) at room temperature. Postsynthetic modification of Mg-MOF-74 films with ethylenediamine decreases sensitivity toward benzene but increases selectivity to CO2 . The reduced porosity and blocked open metal sites caused by amine coordination account for a deterioration in the sensing performance for benzene (by ca. 60 %). The enhanced sensitivity for CO2 (by ca. 25 %) stems from a tailored amine-CO2 interaction. This study demonstrates the feasibility of tuning gas sensing properties by adjusting MOF-analyte interactions, thereby offering new perspectives for the development of MOF-based sensors.

20.
Adv Mater ; 31(11): e1807161, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30637791

RESUMO

Surmounting the inhomogeniety issue of gas sensors and realizing their reproducible ppb-level gas sensing are highly desirable for widespread deployments of sensors to build networks in applications of industrial safety and indoor/outdoor air quality monitoring. Herein, a strategy is proposed to substantially improve the surface homogeneity of sensing materials and gas sensing performance via chip-level pyrolysis of as-grown ZIF-L (ZIF stands for zeolitic imidazolate framework) films to porous and hierarchical zinc oxide (ZnO) nanosheets. A novel approach to generate adjustable oxygen vacancies is demonstrated, through which the electronic structure of sensing materials can be fine-tuned. Their presence is thoroughly verified by various techniques. The sensing results demonstrate that the resultant oxygen vacancy-abundant ZnO nanosheets exhibit significantly enhanced sensitivity and shortened response time toward ppb-level carbon monoxide (CO) and volatile organic compounds encompassing 1,3-butadiene, toluene, and tetrachloroethylene, which can be ascribed to several reasons including unpaired electrons, consequent bandgap narrowing, increased specific surface area, and hierarchical micro-mesoporous structures. This facile approach sheds light on the rational design of sensing materials via defect engineering, and can facilitate the mass production, commercialization, and large-scale deployments of sensors with controllable morphology and superior sensing performance targeted for ultratrace gas detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA