Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
Mini Rev Med Chem ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38798221

RESUMO

Guanine-quadruplexes (G4s) are high-level structures formed by the folding of guaninerich nucleic acid sequences. G4s play important roles in various physiological processes, such as gene transcription, replication, recombination, and maintenance of chromosomal stability. Specific and sensitive monitoring of G4s lays the foundation for further understanding the structure, content, distribution, and function of G4s in organisms, which is important for the treatment and diagnosis of diseases. Moreover, visualization of G4s will provide new ideas for developing antitumor strategies targeting G4s. The design and development of G4-specific ligands are challenging due to the subtle differences in the structure of G4s. This review focuses on the progress of research on G4 fluorescent probes and their binding mechanisms to G4s. Finally, the challenges and future prospects for better detection and targeting of G4s in different organisms are discussed. This paper provides ideas for the development of novel G4 fluorescent probes.

2.
Langmuir ; 40(16): 8568-8579, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38591865

RESUMO

Based on the typical similar repeat units (abcdefg)n of α-helical structure, the peptide H was designed to self-assemble into an organohydrogel in response to pH. Depending on the different pH, the proportions of secondary structure, microstructure, and mechanical properties of the gel were investigated. Circular dichroism (CD) and Fourier transform infrared (FT-IR) showed that the proportion of α-helical structure gradually increased to become dominant with the increase of pH. Combining transmission electron microscopy (TEM) and atomic force microscopy (AFM), it was found that the increase of the ordered α-helix structure promoted fiber formation. The further increase in pH changed the intermolecular forces, resulting in an increase in the α-helix content and the enhancement of helix-helix interaction, causing the gel fibers to converge into thicker and more dense ones. The temperature test showed the stable rheological properties of the organohydrogel between 20-60 °C. Drug release and cytotoxicity showed that the DOX-loaded organohydrogel could have a better release in an acidic environment, indicating its potential application as a drug local delivery carrier.

3.
Sensors (Basel) ; 24(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38544029

RESUMO

In this article, we propose and demonstrate a probe-type multi-core fiber (MCF) sensor for the multi-parameter measurement of seawater. The sensor comprises an MCF and two capillary optical fibers (COFs) with distinct inner diameters, in which a 45° symmetric core reflection (SCR) structure and a step-like inner diameter capillary (SIDC) structure filled with polydimethylsiloxane (PDMS) are fabricated at the fiber end. The sensor is equipped with three channels for different measurements. The surface plasmon resonance (SPR) channel (CHSPR) based on the side-polished MCF is utilized for salinity measurement. The fiber end air cavity, forming the Fabry-Pérot interference (FPI) channel (CHFPI), is utilized for pressure and temperature measurement. Additionally, the fiber Bragg grating (FBG) channel (CHFBG), which is inscribed in the central core, serves as temperature compensation for the measurement results. By combining three sensing principles with space division multiplexing (SDM) technology, the sensor overcomes the common challenges faced by multi-parameter sensors, such as channel crosstalk and signal demodulation difficulties. The experimental results indicate that the sensor has sensitivities of 0.36 nm/‱, -10.62 nm/MPa, and -0.19 nm/°C for salinity, pressure, and temperature, respectively. As a highly integrated and easily demodulated probe-type optical fiber sensor, it can serve as a valuable reference for the development of multi-parameter fiber optic sensors.

4.
Appl Opt ; 63(5): 1385-1393, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38437319

RESUMO

In this work, in pursuit of a multifunctional device with a simple structure, high absorption rate, and excellent bandwidth, a tunable broadband terahertz (THz) absorber based on vanadium dioxide (V O 2) and graphene is proposed. Due to the phase transition of V O 2 and the electrically tunable properties of graphene, the structure realizes single broadband and dual-band absorption characteristics. When graphene is in the insulating state (E f=0e V) and V O 2 is in the metallic state, the developed system has more than 90% absorption and a wide absorption band from 1.36 to 5.48 THz. By adjusting the V O 2 conductivity, the bandwidth absorption can be dynamically varied from 23% to more than 90%, which makes it a perfect broadband absorber. When graphene is in the metallic state (E f=1e V), V O 2 is in the insulating state, and the designed device behaves as a tunable and perfect dual-band absorber, where the absorptivity of the dual-band spectrum can be continuously adjusted by varying the Fermi energy level of graphene. In addition, both the broad absorption spectrum and the dual-band absorption spectrum maintain strong polarization-independent properties and operate well over a wide incidence angle, and the designed system may provide new avenues for the development of terahertz and other frequency-domain tunable devices.

5.
Biomed Opt Express ; 15(2): 793-801, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38404343

RESUMO

A cascaded side-polish plastic optical fiber (POF) and FONTEX optical fiber based surface plasmon resonance (SPR) sensor is proposed for simultaneous measurement of refractive index (RI) and temperature. The side-polish POF and FONTEX optical fiber are connected by using the UV glue in a Teflon plastic tube. The SPR phenomenon can be excited at both of the side-polish region and the FONTEX fiber cladding. The polydimethylsiloxane (PDMS) is coated on the side-polish POF to get a temperature sensing channel. Due to the low RI sensitivity of the FONTEX optical fiber, the cascaded fiber sensor can obtain a broader RI measurement range with a low crosstalk. An RI sensitivity of 700 nm/RIU in the RI measurement range of 1.335-1.39 and a temperature sensitivity of -1.02 nm/°C measured in deionized water with a range of 20-60 °C are obtained. In addition, the cascaded POF based SPR sensor has potential application prospects in the field of biochemical sensing.

6.
Opt Lett ; 49(4): 985-988, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359242

RESUMO

We investigate a unidirectional coupled chiral fiber grating (UCFG) with both helical refractive index (RI) and loss modulation. The two modulations form a π/2 phase difference in the fiber cross-sectional azimuth angle, which "breaks" the mode coupled reciprocity of the forward and backward propagation. The forward propagation fundamental mode coupling is forbidden, while the backward propagation fundamental mode is coupled to the vortex mode. A simulation model based on the beam propagation method (BPM) is utilized to confirm the unidirectional coupling. Using the coupled mode analysis, we find that the key to the coupling difference lies in the non-Hermitian coupling matrix. In addition, the UCFG design involving mixed modulation is also discussed. The UCFG demonstrates its potential as a passive vortex beam generator, filter, and detector, with a transmittance difference of up to 30 dB between the coupled and uncoupled vortex modes.

7.
Opt Lett ; 49(3): 654-657, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300082

RESUMO

A Reuleaux triangle core fiber (RTF) with triple rotational symmetry is proposed and fabricated. Then the RTF is twisted to form the chiral fiber grating, which converts the core mode into a vortex mode containing 3rd-order orbital angular momentum (OAM). Based on the Fourier expansion of the core boundary, the straight-sided and arc-sided triangular core profiles were analyzed, revealing the mechanism of high-efficiency OAM3 generation. The experimental results show a 3rd-order vortex mode with a high conversion efficiency and purity, and the polarization-independent characteristics endowed by the core shape are also confirmed. The proposed RTF provides a new, to the best of our knowledge, way for higher-order vortex beam generation, which can be used in optical fiber communication systems with OAM multiplexing.

8.
Protein J ; 43(2): 274-282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38265732

RESUMO

Cecropin A (1-7) is a cationic antimicrobial peptide which contain lots of basic amino acids. To understand the effect of basic amino acids on cecropin A (1-7), analogues CA2, CA3 and CA4 which have more arginine or lysine at the N-terminal or C-terminal were designed and synthesized. The interaction of cecropin A (1-7) and its analogs with DNA was studied using ultraviolet-visible spectroscopy, fluorescence spectroscopy and circular dichroism spectroscopy. Multispectral analysis showed that basic amino acids improved the interaction between the analogues and DNA. The interaction between CA4 and DNA is most pronounced. Fluorescence spectrum indicated that Ksv value of CA4 is 1.19 × 105  L mol-1 compared to original peptide cecropin A (1-7) of 3.73 × 104  L mol-1. The results of antimicrobial experiments with cecropin A (1-7) and its analogues showed that basic amino acids enhanced the antimicrobial effect of the analogues. The antimicrobial activity of CA4 against E. coli was eightfold higher than that of cecropin A (1-7). The importance of basic amino acid in peptides is revealed and provides useful information for subsequent studies of antimicrobial peptides.


Assuntos
Dicroísmo Circular , DNA , Escherichia coli , Escherichia coli/efeitos dos fármacos , DNA/química , DNA/metabolismo , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Testes de Sensibilidade Microbiana
9.
Opt Express ; 31(25): 42218-42229, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087600

RESUMO

A mixed multi-order vortex beam generator, based on a Reuleaux triangle core fiber chiral grating (RCFG), is proposed. The triangular perturbation and off-axis effects induced by core shape, result in the simultaneous coupling of the core mode with the 1st- and 3rd-order vortex modes. To the best of our knowledge, this is the first time that a mixed vortex beam was generated in a single chiral fiber. The phase matching conditions required for the co-coupling of multi-order vortex beams are analyzed based on the coupled mode theory. Additionally, a cladding shrinkage method is proposed to flexibly adjust the co-coupling wavelength. We found that the key to co-coupling lies in balancing the different order perturbations of the Reuleaux triangle core fiber (RTF). The proposed method offers a new approach for the design of mixed multi-order vortex beam generators, with potential applications in fields such as fiber OAM communications, optical tweezers, and super-resolution imaging.

10.
Opt Express ; 31(25): 42637-42650, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087633

RESUMO

In the context of optical fiber humidity sensing, the long-term stability of sensors in high humidity and dew environments such as bathrooms or marine climates remains a challenge, especially since many humidity sensitive materials are water soluble. In this study, we use methyldiethanolamine, pentaerythritol triacrylate and Eosin Y to form a liquid-solid structure humidity sensitive component, the outermost layer is coated with PDMS passivating layer to ensure the stability and durability of the humidity sensor under the conditions of dew and high humidity. The liquid microcavity of the sensor consists of methyldiethanolamine-pentaerythritol triacrylate composite solution, and the sensitivity is several times higher than that of the liquid-free cavity sensor. The sensitivity of the sensor to temperature is verified (0.43 nm/°C and 0.30 nm/°C, respectively) and temperature crosstalk is compensated using a matrix. The compact structure allows for ultra-fast response (602 ms) and recovery time (349 ms). Our work provides a promising platform for efficient and practical humidity and other gas monitoring systems.

11.
Opt Lett ; 48(23): 6156-6159, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039215

RESUMO

A challenge in all-fiber-integrated metasurface devices is to efficiently control dispersion in the limited fiber end area to build metasurfaces, therefore, the design of metasurfaces with a special structure becomes crucial to meet the demands of dispersion control. A unique phase response of circularly polarized light in catenary metasurfaces can offer new opportunities for polarization-sensitive arbitrary chromatic dispersion control. Herein, we proposed an optical achromatic metalens based on equal width catenary metasurfaces integrated on the large-mode optical fiber (LMF) end. To reduce phase distortions, the LMF is designed to generate quasi-plane waves (QPW), and then QPW converts from catenary metasurfaces to realize achromatic focusing. A notable feature of this device is its axial focal length shift as low as 0.09% across the working wavelength range from 1.33 µm to 1.55 µm, commonly used in optical fiber communication, demonstrating its excellent dispersion control capability. Furthermore, the device exhibits exceptional capabilities to break through the diffraction limit of the output field. This research has potential applications in the fields of achromatic devices, chromatic aberration correction, fiber lasers, and optical communication and modulation.

12.
Opt Express ; 31(23): 37564-37573, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017883

RESUMO

A hole-assisted three-core fiber (HATCF) has been proposed as a sensor for simultaneous measurement of refractive index (RI) and temperature. An 8 mm long HATCF is fused between two single mode fibers (SMFs). One air hole of the HATCF is opened by femtosecond laser ablation technique to expose a suspended core to the external environment. Due to the same diameters of the two suspended cores, the resonance couplings between the center core and the two suspended cores occur at the same wavelength, which leads to a strong resonance dip. When the solution is filled into the open air hole, the resonance dip is split in two dips because the phase matching wavelength between center core and the suspended core in the open air hole is changed. Simultaneous measurement of RI and temperature can be achieved by monitoring the wavelengths of the two dips. The measured RI and temperature sensitivities are 1369 nm/RIU in the range of 1.333-1.388 and 83.48 pm/°C in the range of 25-70 °C. The proposed sensor has outstanding advantages such as simple structure, high integration and dual parameter measurement, making it a potential application in the field of biological detection.

13.
J Orthop Surg Res ; 18(1): 837, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932780

RESUMO

OBJECTIVE: To explore the mechanism of the p38MAPK signaling pathway in repairing articular cartilage defects with biological collagen membranes. METHODS: Thirty-two healthy adult male rabbits were randomly divided into a control group (n = 8), model group (n = 8), treatment group (n = 8) and positive drug group (n = 8). The control group was fed normally, and the models of bilateral knee joint femoral cartilage defects were established in the other three groups. The knee cartilage defects in the model group were not treated, the biological collagen membrane was implanted in the treatment group, and glucosamine hydrochloride was intragastrically administered in the positive drug group. Twelve weeks after the operation, the repair of cartilage defects was evaluated by histological observation (HE staining and Masson staining), the degree of cartilage repair was quantitatively evaluated by the Mankin scoring system, the mRNA expression levels of p38MAPK, MMP1 and MMP13 were detected by real-time fluorescence quantitative PCR (qRT-PCR), and the protein expression levels of p38MAPK, p-p38MAPK, MMP1 and MMP13 were detected by Western blotting. The results after the construction of cartilage defects, histological staining showed that the articular cartilage wound was covered by a large capillary network, the cartilage tissue defect was serious, and a small amount of collagen fibers were formed around the wound, indicating the formation of a small amount of new bone tissue. In the treatment group and the positive drug group, the staining of cartilage matrix was uneven, the cytoplasmic staining was lighter, the chondrocytes became hypertrophic as a whole, the chondrocytes cloned and proliferated, some areas were nest-shaped, the cells were arranged disorderly, the density was uneven, and the nucleus was stained deeply. The Mankin score of the model group was significantly higher than that of the control group, while the Mankin scores of the treatment group and positive drug group were significantly lower than that of the model group. The results of qRT-PCR detection showed that compared with the control group, the expression level of the p38MAPK gene in the model group did not increase significantly, but the gene expression levels of MMP1 and MMP13 in the model group increased significantly, while the gene expression levels of MMP1 and MMP13 decreased significantly in the treatment group and positive drug group compared with the model group. The results of Western blot detection showed that compared with the control group, the expression level of p38MAPK protein in the model group was not significantly increased, but the phosphorylation level of p38MAPK protein and the protein expression levels of MMP1 and MMP13 were significantly increased in the model group, while the phosphorylation level of p38MAPK protein and the protein expression levels of MMP1 and MMP13 in the treatment group and positive drug group were significantly lower than those in the model group. CONCLUSION: The biological collagen membrane can regulate the expression of MMP1 and MMP13 and repair the activity of chondrocytes by reducing the phosphorylation level of p38MAPK and inhibiting the activation of the p38MAPK signaling pathway, thus improving the repair effect of articular cartilage defects in rabbits. The P38MAPK signaling pathway is expected to become an important molecular target for the clinical treatment of cartilage defects in the future.


Assuntos
Cartilagem Articular , Engenharia Tecidual , Animais , Masculino , Coelhos , Engenharia Tecidual/métodos , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Colágeno/metabolismo , Cartilagem Articular/cirurgia , Condrócitos/metabolismo , Transdução de Sinais
14.
Opt Express ; 31(20): 31768-31779, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37858994

RESUMO

This paper introduces a surface plasmon resonance (SPR) sensor using tapered silica fiber and photopolymer coating for enhanced refractive index (RI) detection. Tapering the silica fiber to a diameter of 10 µm ensures the evanescent wave leaks into a 1.8-µm thick photopolymer film, which increases the average waveguide RI and broadens the RI detection range accordingly. A 50-nm thick single-side gold film is coated on the photopolymer film, exciting SPR and causing less light transmission loss than a double-side gold film. The method avoids the complex microfabrication processes of conventional polymer optical fiber SPR sensors, while the waveguide RI can be controlled by altering the curing time of the photopolymer during fabrication. The sensor has an overall sensitivity of 3686.25 nm/RIU, enabling RI detection of 1.333 - 1.493. Moreover, the sensor has an ultrahigh sensitivity of 6422.9 nm/RIU in the RI range of 1.423 - 1.493. The temperature response is about 1.43 nm/°C at 20 - 50 °C, which has little impact on RI detection. Finally, we demonstrate that the sensor can grade the severity of hepatic steatosis by measuring the RIs of cytoplasm/triglyceride emulsions with superior sensing performance.

15.
Opt Express ; 31(20): 32543-32553, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859055

RESUMO

An optical fiber sensor based on a hole-assisted dual-core fiber (HADCF) has been proposed and experimentally demonstrated for dual-parameter measurements. The dual-mode interferometer created uses the LP01 mode and LP11 mode in the suspended core of a specialist optical fiber, combined with a directional coupler formed by using the suspended core and the center core in a 16 mm long HADCF. Using this, the simultaneous measurement of salinity (due to the presence of NaCl) and temperature has been achieved through monitoring the interference dip and resonance dip. The sensitivities of the measurement of salinity and temperature are 190.7 pm/‰ and -188.2 pm/°C, respectively. The sensor developed has the advantages of simplicity of fabrication, a high level of integration and the potential for measurement of dual parameters, supporting its potential applications in marine environment measurements.

16.
ACS Sens ; 8(11): 4171-4178, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37861795

RESUMO

Respiration is essential for supporting human body functions. However, a biocompatible fiber respiration sensor has rarely been discussed. In this study, we propose a wearable fiber surface plasmon resonance (SPR) respiration sensor using a LiBr-doped silk fibroin (SF) film. The SPR sensor monitors respiration by responding to airway humidity variation during inhalation and exhalation. We fabricated the SPR respiration sensor by depositing the core of a plastic-clad optical fiber with a gold film and an SF-LiBr composite film. The SF-LiBr composite film can absorb water through the interaction between water molecules and hydrogen bonds linking fibroin chains. Thus, humidity variation can change the SF-LiBr composite film's refractive index (RI), altering the phase-matching condition of the surface plasmon polaritons and shifting the SPR spectral dip. In experiments, we test the effect of the LiBr doping ratio on humidity response and confirm that the SF-22.1 wt % LiBr sensor has balanced performances. The SF-22.1 wt % LiBr sensor has a broad sensing range of 35-99% relative humidity (RH), a reasonable overall sensitivity of -6.5 nm/% RH, a fast response time of 135 ms, a quick recovery time of 150 ms, good reversibility, and good repeatability, which is capable of tracking different respiration states and patterns. Finally, we encapsulate this sensor in a conventional nasal oxygen cannula for wearable respiration monitoring, proving that the sensor is suitable for high-sensitivity, real-time, and accurate respiration monitoring.


Assuntos
Fibroínas , Dispositivos Eletrônicos Vestíveis , Humanos , Ressonância de Plasmônio de Superfície , Respiração , Água
17.
Opt Lett ; 48(20): 5245-5248, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37831838

RESUMO

In this Letter, we present a high-strain resolution fiber laser-based sensor (FLS) by a novel optical phase-locked loop (OPLL) interrogation technique based on a root mean square detector (RMSD). The sensor consists of a distributed feedback (DFB) fiber laser as a master laser for strain sensing and a fiber Fabry-Perot interferometer (FFPI) as a reference. The laser carrier locks to the reference by the PDH technique, and the single sideband laser working as a slave laser locks to the DFB sensing element using the OPLL technique, respectively. A strain resolution of 8.19 pε/√Hz at 1 Hz and 35.5 pε in 10 s is achieved in the demonstrational experiments. Significantly, the noise behaves a 1∕f distribution below 0.2 Hz due to the very low pump power for the DFB sensor and an active thermostat testing environment. The proposed OPLL interrogation brings new thinking for the demodulation of FLS. This strain sensor based on FLS has a great performance in strain measurement and can be a powerful tool for geophysical research.

18.
Sensors (Basel) ; 23(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896612

RESUMO

An optical fiber sensor for the simultaneous measurement of microdisplacement and temperature based on balloon-shaped single-mode fibers cascaded with a fiber Bragg grating with two core-offset joints is proposed. The interference between the core mode and cladding mode is caused by the stimulation of the cladding mode by the core-offset joints' structure. The cladding of the core has a distinct refractive index, which causes optical path differences and interference. The balloon-shaped structure realizes mode selection by bending. As the displacement increases, the radius of the balloon-shaped interferometer changes, resulting in a change in the interference fringes of the interferometer, while the Bragg wavelength of the fiber grating remains unchanged. Temperature changes will cause the interference fringes of the interferometer and the Bragg wavelength of the fiber grating to shift. The proposed optical fiber sensor allows for the simultaneous measurement of microdisplacement and temperature. The results of the experiment indicate that the sensitivity of the interferometer to microdisplacement is 0.306 nm/µm in the sensing range of 0 to 200 µm and that the temperature sensitivity is 0.165 nm/°C, respectively. The proposed curvature sensor has the advantages of a compact structure, extensive spectrum of dynamic measurement, high sensitivity, and simple preparation, and has a wide range of potential applications in the fields of structural safety monitoring, aviation industry, and resource exploration.

19.
Appl Opt ; 62(28): 7346-7353, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855501

RESUMO

Electro-optic modulators are essential devices on silicon photonic chips in modern optical communication networks. This paper presents a compact, low-loss electro-optic modulator. The modulation efficiency is greatly improved by embedding the lower half of the slot waveguide into the buried oxide layer and inserting graphene at the junction. The interaction of graphene with an optical field in a waveguide is studied using the finite element method. The functions of phase modulation and absorption modulation are realized by changing the gate voltage to change the chemical potential of graphene. The semi-embedded slot waveguide optical modulator has a length of 50 µm. After simulation verification, it can be used as an electro-absorption modulator and can achieve a modulation depth of 26.38 dB and an insertion loss of 0.60 dB. When used as an electro-refractive modulator, it can be realized with a linear change of phase from zero to π; the total insertion loss is only 0.59 dB. The modulator has a modulation bandwidth of 79.6 GHz, and the energy consumption as electro-absorption and electro-refraction modulation are 0.51 and 1.92 pj/bit, respectively. Compared with common electro-optic modulators, the electro-optic modulator designed in this paper has a higher modulation effect and also takes into account the advantages of low insertion loss and low energy consumption. This research is helpful for the design of higher-performance optical communication network devices.

20.
Appl Opt ; 62(27): 7199-7204, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37855575

RESUMO

A hot trend in the development of optoelectronic devices is how to use the principle of surface plasmon resonance to enhance the performance of integrated photonics devices and achieve miniaturization. This paper proposes an accompanying waveguide coupling structure of micro/nano fibers, which consists of two parallel-placed micro/nano fibers (MNFs) coated with a silver film in the waist region and infused with a refractive index matching oil. In the overlapping region, there exists a segment of surface plasmon polaritons (SPPs) coupling area. The excitation and coupling characteristics of SPPs are studied through numerical simulation. Optimal coupling enhancement configuration is obtained by studying variables such as spacing distance, coupling length, and metal film thickness. A comparison is made with the SPP intensity of a single MNF, showing a 220% increase in electric field intensity, demonstrating its excellent coupling effect. By using this coupling structure, exploration of SPPs excitation and coupling mechanisms is enhanced, and structures resembling interferometric devices can be designed, providing new insights for high-performance miniaturized devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA