Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Water Res ; 260: 121916, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38875857

RESUMO

Ammonia-oxidizing bacteria (AOB) are ubiquitous on the earth and have broad applications in bioremediation. However, the number of their species with standing in nomenclature and deposited in Microbial Culture Collections still remains low. Moreover, only a few novel species have been reported over the last decades. In this study, we sealed agar in serum bottles to develop a kind of solid agar plate with the oxygen concentration in the headspace maintained at low levels. By using these plates, eight AOB isolates including two novel species were obtained. When AOB cells were grown on the sealed solid agar plates, the time to form visible colonies was largely reduced and the maximum diameter of colonies reached 2 mm, which makes the process of AOB isolation rapid and efficient. Based on five AOB isolates, the headspace oxygen concentration had a significant influence on AOB growth either on solid plate or in liquid culture. Especially, when grown under 21 % O2, the number of colonies formed on solid agar plates was very low and sometimes no visible colony formed. Besides the application on AOB isolation, the sealed solid agar plate was also effective for the enumeration and preservation of AOB cells. When preserved under room temperature for more than ten months, the AOB colonies on the plate could still be recovered. This method provides a feasible way to isolate more novel AOB species from the environment and deposit more species in Microbial Culture Collections.

2.
Front Pharmacol ; 15: 1379058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895617

RESUMO

Ulcerative colitis (UC), a subtype of inflammatory bowel disease, manifests with symptoms such as abdominal pain, diarrhea, and mucopurulent, bloody stools. The pathogenesis of UC is not fully understood. At present, the incidence of UC has increased significantly around the world. Conventional therapeutic arsenals are relatively limited, with often poor efficacy and many adverse effects. In contrast, traditional Chinese medicine (TCM) holds promise due to their notable effectiveness, reduced recurrence rates, and minimal side effects. In recent years, significant progress has been made in the basic research on TCM for UC treatment. It has been found that the inhibition of ferroptosis through the intervention of TCM can significantly promote intestinal mucosal healing and reverse UC. The mechanism of action involves multiple targets and pathways. Aim of the review: This review summarizes the experimental studies on the targeted regulation of ferroptosis by TCM and its impact on UC in recent years, aiming to provide theoretical basis for the prevention, treatment, and further drug development for UC. Results: Ferroptosis disrupts antioxidant mechanisms in intestinal epithelial cells, damages the intestinal mucosa, and participates in the pathological process of UC. TCM acts on various pathways such as Nrf2/HO-1 and GSH/GPX4, blocking the pathological progression of ferroptosis in intestinal epithelial cells, inhibiting pathological damage to the intestinal mucosa, and thereby alleviating UC. Conclusion: The diverse array of TCM single herbs, extracts and herbal formulas facilitates selective and innovative research and development of new TCM methods for targeting UC treatment. Although progress has been made in studying TCM compound formulas, single herbs, and extracts, there are still many issues in clinical and basic experimental designs, necessitating further in-depth scientific exploration and research.

3.
Adv Healthc Mater ; : e2401744, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885286

RESUMO

Rheumatoid arthritis (RA) is a chronic immune disease characterized by the infiltration of immune cells and the proliferation of fibroblast-like synoviocytes (FLS) at the joint site, leading to inflammation and joint destruction. However, the available treatment options targeting both inflammatory and proliferative FLS are limited. Herein, this work presents three covalent organic frameworks (COFs) photothermal composite systems modified with multi-armed polyethylene glycols (PEG) for the treatment of RA. These systems exhibit a dual response under low pH and high reactive oxygen species (ROS) conditions at the site of inflammation, with a specific focus on delivering the protein drug ribonuclease A (RNase A). Notably, molecular docking studies reveal the interaction between RNase A and NF-κB p65 protein, and Western blotting confirm its inhibitory effect on NF-κB activity. In vitro and in vivo experiments verify the significant reduction in joint swelling and deformities in adjuvant-induced arthritis (AIA) rats after treatment with RNase A delivered by multi-armed PEG-modified COF ligands, restoring joint morphology to normal. These findings underscore the promising therapeutic potential of COFs for the treatment of RA, highlighting their unique capabilities in addressing both inflammatory and proliferative aspects of the disease and expanding the scope of biomedical applications for COFs.

4.
ACS Appl Mater Interfaces ; 16(22): 28029-28040, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775012

RESUMO

Biophysical and biochemical cues of biomaterials can regulate cell behaviors. Dental pulp stem cells (DPSCs) in pulp tissues can differentiate to odontoblast-like cells and secrete reparative dentin to form a barrier to protect the underlying pulp tissues and enable complete pulp healing. Promotion of the odontogenic differentiation of DPSCs is essential for dentin regeneration. The effects of the surface potentials of biomaterials on the adhesion and odontogenic differentiation of DPSCs remain unclear. Here, poly(vinylidene fluoride-trifluoro ethylene) (P(VDF-TrFE)) films with different surface potentials were prepared by the spin-coating technique and the contact poling method. The cytoskeletal organization of DPSCs grown on P(VDF-TrFE) films was studied by immunofluorescence staining. Using atomic force microscopy (AFM), the lateral detachment forces of DPSCs from P(VDF-TrFE) films were quantified. The effects of electrical stimulation generated from P(VDF-TrFE) films on odontogenic differentiation of DPSCs were evaluated in vitro and in vivo. The unpolarized, positively polarized, and negatively polarized films had surface potentials of -52.9, +902.4, and -502.2 mV, respectively. DPSCs on both negatively and positively polarized P(VDF-TrFE) films had larger cell areas and length-to-width ratios than those on the unpolarized films (P < 0.05). During the detachment of DPSCs from P(VDF-TrFE) films, the average magnitudes of the maximum detachment forces were 29.4, 72.1, and 53.9 nN for unpolarized, positively polarized, and negatively polarized groups, respectively (P < 0.05). The polarized films enhanced the mineralization activities and increased the expression levels of the odontogenic-related proteins of DPSCs compared to the unpolarized films (P < 0.05). The extracellular signal-regulated kinase (ERK) signaling pathway was involved in the odontogenic differentiation of DPSCs as induced by surface charge. In vivo, the polarized P(VDF-TrFE) films enhanced adhesion of DPSCs and promoted the odontogenic differentiation of DPSCs by electrical stimulation, demonstrating a potential application of electroactive biomaterials for reparative dentin formation in direct pulp capping.


Assuntos
Adesão Celular , Diferenciação Celular , Polpa Dentária , Estimulação Elétrica , Odontogênese , Polivinil , Células-Tronco , Polpa Dentária/citologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Humanos , Adesão Celular/efeitos dos fármacos , Odontogênese/efeitos dos fármacos , Polivinil/química , Animais , Células Cultivadas , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Propriedades de Superfície
5.
Diabetes Metab Syndr Obes ; 17: 2107-2120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799279

RESUMO

Introduction: Cardiac fibrosis is one of the important causes of heart failure and death in diabetic cardiomyopathy (DCM) patients. Circular RNAs (circRNAs) are covalently closed RNA molecules in eukaryotes and have high stability. Their role in myocardial fibrosis with diabetic cardiomyopathy (DCM) remain to be fully elucidated. This study aimed to understand the expression profiles of circRNAs in myocardial fibrosis with DCM, exploring the possible biomarkers and therapeutic targets for DCM. Methods: At 21 weeks of age, db/db mice established the type 2 DCM model measured by echocardiography, and the cardiac tissue was extracted for Hematoxylin-eosin, Masson's trichrome staining, and transmission electron microscopy. Subsequently, the expression profile of circRNAs in myocardial fibrosis of db/db mice was constructed using microarray hybridization and verified by real-time quantitative polymerase chain reaction. A circRNA-microRNA-messenger RNA coexpression network was constructed, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were done. Results: Compared with normal control mice, db/db mice had 77 upregulated circRNAs and 135 downregulated circRNAs in their chromosomes (fold change ≥1.5, P ≤ 0.05). Moreover, the enrichment analysis of circRNA host genes showed that these differentially expressed circRNAs were mainly involved in mitogen-activated protein kinase signaling pathways. CircPHF20L1, circCLASP1, and circSLC8A1 were the key circRNAs. Moreover, circCLASP1/miR-182-5p/Wnt7a, circSLC8A1/miR-29b-1-5p/Col12a1, and most especially circPHF20L1/miR-29a-3p/Col6a2 might be three novel axes in the development of myocardial fibrosis in DCM. Conclusion: The findings will provide some novel circRNAs and molecular pathways for the prevention or clinical treatment of DCM through intervention with specific circRNAs.

6.
Mater Today Bio ; 25: 101011, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38445010

RESUMO

Bone defects caused by trauma, tumor resection, or developmental abnormalities are important issues in clinical practice. The vigorous development of tissue engineering technology provides new ideas and directions for regenerating bone defects. Hydroxyapatite (HAp), a bioactive ceramic, is extensively used in bone tissue engineering because of its excellent osteoinductive performance. However, its application is challenged by its single function and conventional environment-unfriendly synthesis methods. In this study, we successfully "green" synthesized sr-silk fibroin co-assembly hydroxyapatite nanoparticles (Sr-SF-HA) using silk fibroin (SF) as a biomineralized template, thus enabling it to have angiogenic activity and achieving the combination of organic and inorganic substances. Then, the rough composite microspheres loaded with Sr-SF-HA (CS/Sr-SF-HA) through electrostatic spraying technology and freeze-drying method were prepared. The CCK-8 test and live/dead cell staining showed excellent biocompatibility of CS/Sr-SF-HA. Alkaline phosphatase (ALP) staining, alizarin red staining (ARS), immunofluorescence, western blotting, and qRT-PCR test showed that CS/Sr-SF-HA activated the expression of related genes and proteins, thus inducing the osteogenic differentiation of rBMSCs. Moreover, tube formation experiments, scratch experiments, immunofluorescence, and qRT-PCR detection indicated that CS/Sr-SF-HA have good angiogenic activity. Furthermore, in vivo studies showed that the CS/Sr-SF-HA possesses excellent biocompatibility, vascular activity, as well as ectopic osteogenic ability in the subcutaneous pocket of rats. This study indicates that the construction of CS/Sr-SF-HA with angiogenic and osteogenic properties has great potential for bone tissue engineering.

7.
J Cell Mol Med ; 28(6): e18195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429907

RESUMO

METTL3 has been shown to be involved in regulating a variety of biological processes. However, the relationship between METTL3 expression and glycolysis, cuproptosis-related genes and the ceRNA network in oesophageal carcinoma (ESCA) remains unclear. ESCA expression profiles from databases were obtained, and target genes were identified using differential analysis and visualization. Immunohistochemistry (IHC) staining assessed METTL3 expression differences. Functional enrichment analysis using GO, KEGG and GSEA was conducted on the co-expression profile of METTL3. Cell experiments were performed to assess the effect of METTL3 interference on tumour cells. Correlation and differential analyses were carried out to assess the relationship between METTL3 with glycolysis and cuproptosis. qRT-PCR was used to validate the effects of METTL3 interference on glycolysis-related genes. Online tools were utilized to screen and construct ceRNA networks based on the ceRNA theory. METTL3 expression was significantly higher in ESCA compared to the controls. The IHC results were consistent with the above results. Enrichment analysis revealed that METTL3 is involved in multiple pathways associated with tumour development. Significant correlations were observed between METTL3 and glycolysis-related genes and cuproptosis-related gene. Experiments confirmed that interfered with METTL3 significantly inhibited glucose uptake and lactate production in tumour cells, and affected the expression of glycolytic-related genes. Finally, two potential ceRNA networks were successfully predicted and constructed. Our study establishes the association between METTL3 overexpression and ESCA progression. Additionally, we propose potential links between METTL3 and glycolysis, cuproptosis and ceRNA, presenting a novel targeted therapy strategy for ESCA.


Assuntos
Carcinoma , Neoplasias Esofágicas , Metiltransferases , Humanos , Biomarcadores , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Glicólise/genética , Ácido Láctico , Metiltransferases/genética , RNA Endógeno Competitivo
8.
Lung Cancer ; 188: 107449, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38184958

RESUMO

BACKGROUND: Sideroflexin 1 (SFXN1) has been discovered as a novel tumor marker for lung adenocarcinoma, but data on its importance in the development of lung adenocarcinoma is still limited. This study evaluated the correlation between SFXN1 and parameters related to 18F-flurodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT), and further explored the role of SFXN1 in the value-added and glycolytic processes of LUAD. METHOD: The expression and prognostic value of SFXN1 mRNA in LUAD were analyzed using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) data base. Retrospective analysis of 18F-FDG PET imaging and metabolic parameters in 42 patients to explore the relationship between the expression of SFXN1 and glucose metabolism levels in lung adenocarcinoma and its clinical significance. H1975 cells were selected as the in vitro research object, and the biological effects of SFXN1 on LUAD were further elucidated through Edu proliferation assay, CCK8 activity assay, wound healing experiment, and cell flow cytometry. RESULT: SFXN1 is highly expressed in various tumors, including LUAD, and its high expression can serve as an independent predictor of overall survival in lung adenocarcinoma. In addition, the expression of SFXN1 in LUAD was significantly correlated with 18F-FDG PET/CT parameters: maximum and average standardized uptake values (SUVmax and SUVmean), as well as total lesion glycolysis (TLG) (rho = 0.574, 0.589, and 0.338, p < 0.05), which can predict the expression of SFXN1 with an accuracy of 0.934. In vitro functional experiments have shown that knocking down SFXN1 inhibits the proliferation and migration of LUAD cells, promotes cell apoptosis, and may inhibit tumor activity by regulating the expression of glycolytic related genes SLC2A1, HK2, GPI, ALDOA, GAPDH, ENO1, PKM, and LDHA. CONCLUSION: The overexpression of SFXN1 is closely related to FDG uptake, and SFXN1, as a promising prognostic biomarker, may mediate the development of LUAD through the glycolytic pathway.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Fluordesoxiglucose F18/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Prognóstico , Estudos Retrospectivos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/genética , Biomarcadores
9.
Mol Med Rep ; 28(4)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37681455

RESUMO

Chronic complications of diabetes increase mortality and disability of patients. It is crucial to find potential early biomarkers and provide novel therapeutic strategies for diabetic complications. Circular RNAs (circRNAs), covalently closed RNA molecules in eukaryotes, have high stability. Recent studies have confirmed that differentially expressed circRNAs have a vital role in diabetic complications. Certain circRNAs, such as circRNA ankyrin repeat domain 36, circRNA homeodomain­interacting protein kinase 3 (circHIPK3) and circRNA WD repeat domain 77, are associated with inflammation, endothelial cell apoptosis and smooth muscle cell proliferation, leading to vascular endothelial dysfunction and atherosclerosis. CircRNA LDL receptor related protein 6, circRNA actin related protein 2, circ_0000064, circ­0101383, circ_0123996, hsa_circ_0003928 and circ_0000285 mediate inflammation, apoptosis and autophagy of podocytes, mesangial cell hypertrophy and proliferation, as well as tubulointerstitial fibrosis, in diabetic nephropathy by regulating the expression of microRNAs and proteins. Circ_0005015, circRNA PWWP domain containing 2A, circRNA zinc finger protein 532, circRNA zinc finger protein 609, circRNA DNA methyltransferase 3ß, circRNA collagen type I α2 chain and circHIPK3 widely affect multiple biological processes of diabetic retinopathy. Furthermore, circ_000203, circ_010567, circHIPK3, hsa_circ_0076631 and circRNA cerebellar degeneration­related protein 1 antisense are involved in the pathology of diabetic cardiomyopathy. CircHIPK3 is the most well­studied circRNA in the field of diabetic complications and is most likely to become a biological marker and therapeutic target for diabetic complications. The applications of circRNAs may be a promising treatment strategy for human diseases at the molecular level. The relationship between circRNAs and diabetic complications is summarized in the present study. Of note, circRNA­targeted therapy and the role of circRNAs as biomarkers may potentially be used in diabetic complications in the future.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Retinopatia Diabética , MicroRNAs , Humanos , RNA Circular/genética , MicroRNAs/genética , Biomarcadores , Diabetes Mellitus/genética
10.
J Transl Med ; 21(1): 574, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37626419

RESUMO

BACKGROUND: This study investigated the correlation between the expression of DARS2 and metabolic parameters of 18F-FDG PET/CT, and explored the potential mechanisms of DARS2 affecting the proliferation and glycolysis of lung adenocarcinoma (LUAD) cells. METHODS: This study used genomics and proteomics to analyze the difference in DARS2 expression between LUAD samples and control samples. An analysis of 62 patients with LUAD who underwent 18F-FDG PET/CT examinations before surgery was conducted retrospectively. The correlation between DARS2 expression and PET/CT metabolic parameters, including SUVmax, SUVmean, MTV, and TLG, was examined by Spearman correlation analysis. In addition, the molecular mechanism of interfering with DARS2 expression in inhibiting LUAD cell proliferation and glycolysis was analyzed through in vitro cell experiments. RESULTS: DARS2 expression was significantly higher in LUAD samples than in control samples (p < 0.001). DARS2 has high specificity (98.4%) and sensitivity (95.2%) in the diagnosis of LUAD. DARS2 expression was positively correlated with SUVmax, SUVmean, and TLG (p < 0.001). At the same time, the sensitivity and specificity of SUVmax in predicting DARS2 overexpression in LUAD were 88.9% and 65.9%, respectively. In vitro cell experiments have shown that interfering with DARS2 expression can inhibit the proliferation and migration of LUAD cells, promote cell apoptosis, and inhibit the glycolytic activity of tumor cells by inhibiting the expression of glycolytic related genes SLC2A1, GPI, ALDOA, and PGAM1. CONCLUSIONS: Overexpression of DARS2 is associated with metabolic parameters on 18F-FDG PET/CT, which can improve LUAD diagnosis accuracy. DARS2 may be a useful biomarker to diagnose, prognosis, and target treatment of LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Aspartato-tRNA Ligase , Neoplasias Pulmonares , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18 , Estudos Retrospectivos , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/genética , Glicólise , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética
11.
J Nanobiotechnology ; 21(1): 266, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563585

RESUMO

Bacterial infections can significantly impede wound healing and pose a serious threat to the patient's life. The excessive use of antibiotics to combat bacterial infections has led to the emergence of multi-drug-resistant bacteria. Therefore, there is a pressing need for alternative approaches, such as photothermal therapy (PTT), to address this issue. In this study, for the first time, CuS NPs with photothermal properties were synthesized using sericin as a biological template, named CuS@Ser NPs. This method is simple, green, and does not produce toxic and harmful by-products. These nanoparticles were incorporated into a mixture (XK) of xanthan gum and konjac glucomannan (KGM) to obtain XK/CuS NPs composite hydrogel, which could overcome the limitations of current wound dressings. The composite hydrogel exhibited excellent mechanical flexibility, photothermal response, and biocompatibility. It also demonstrated potent antibacterial properties against both Gram-positive and negative bacteria via antibacterial experiments and accelerated wound healing in animal models. Additionally, it is proved that the hydrogel promoted tissue regeneration by stimulating collagen deposition, angiogenesis, and reducing inflammation. In summary, the XK/CuS NPs composite hydrogel presents a promising alternative for the clinical management of infected wounds, offering a new approach to promote infected wound healing.


Assuntos
Infecções Bacterianas , Hidrogéis , Animais , Hidrogéis/farmacologia , Cicatrização , Antibacterianos/farmacologia , Colágeno
12.
Small ; 19(46): e2303985, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37442792

RESUMO

Potassium-ion batteries (PIBs) have broad application prospects in the field of electric energy storage systems because of its abundant K reserves, and similar "rocking chair" operating principle as lithium-ion batteries (LIBs). Aiming to the large volume expansion and sluggish dynamic behavior of anode materials for storing large sized K-ion, bismuth telluride (Bi2 Te3 ) nanoplates hierarchically encapsulated by reduced graphene oxide (rGO), and nitrogen-doped carbon (NC) are constructed as anodes for PIBs. The resultant Bi2 Te3 @rGO@NC architecture features robust chemical bond of Bi─O─C, tightly physicochemical confinement effect, typical conductor property, and enhanced K-ion adsorption ability, thereby producing superior electrochemical kinetics and outstanding morphological and structural stability. It is visually elucidated via high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) that conversion-alloying dual-mechanism plays a significant role in K-ion storage, allowing 12 K-ion transport per formular unit employing Bi as redox site. Thus, the high first reversible specific capacity of 322.70 mAh g-1 at 50 mA g-1 , great rate capability and cyclic stability can be achieved for Bi2 Te3 @rGO@NC. This work lays the foundation for an in-depth understanding of conversion-alloying mechanism in potassium-ion storage.

13.
Int J Biol Macromol ; 247: 125652, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37399875

RESUMO

Bacterial infection is one of the most critical obstacles in wound healing, and severe bacterial infections can lead to inflammatory conditions and delay the healing process. Herein, a novel hydrogel based on polyvinyl alcohol (PVA), agar, and silk-AgNPs was prepared using a straightforward one-pot physical cross-linking method. The in situ synthesis of AgNPs in hydrogels exploited the reducibility of tyrosine (Tyr tyrosine) in silk fibroin, which endowed the hydrogels with outstanding antibacterial qualities. In addition, the strong hydrogen bond cross-linked networks of agar and the crystallites formed by PVA as the physical cross-linked double network of the hydrogel gave it excellent mechanical stability. The PVA/agar/SF-AgNPs (PASA) hydrogels exhibited excellent water absorption, porosity, and significant antibacterial effects against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Furthermore, in vivo experimental results confirmed that the PASA hydrogel significantly promoted wound repair and skin tissue reconstruction by reducing inflammation and promoting collagen deposition. Immunofluorescence staining showed that the PASA hydrogel enhanced CD31 expression to promote angiogenesis while decreasing CD68 expression to reduce inflammation. Overall, the novel PASA hydrogel showed great potential for bacterial infection wound management.


Assuntos
Infecções Bacterianas , Álcool de Polivinil , Humanos , Ágar , Álcool de Polivinil/química , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização , Hidrogéis/farmacologia , Hidrogéis/química , Inflamação
14.
J Cell Mol Med ; 27(17): 2495-2506, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395157

RESUMO

To explore the underlying mechanism of lncRNA MALAT1 in the pathogenesis of diabetic cardiomyopathy (DCM). DCM models were confirmed in db/db mice. MiRNAs in myocardium were detected by miRNA sequencing. The interactions of miR-185-5p with MALAT1 and RhoA were validated by dual-luciferase reporter assays. Primary neonatal cardiomyocytes were cultured with 5.5 or 30 mmol/L D-glucose (HG) in the presence or absence of MALAT1-shRNA and fasudil, a ROCK inhibitor. MALAT1 and miR-185-5p expression were determined by real-time quantitative PCR. The apoptotic cardiomyocytes were evaluated using flow cytometry and TUNEL staining. SOD activity and MDA contents were measured. The ROCK activity, phosphorylation of Drp1S616 , mitofusin 2 and apoptosis-related proteins were analysed by Western blotting. Mitochondrial membrane potential was examined by JC-1. MALAT1 was significantly up-regulated while miR-185-5p was down-regulated in myocardium of db/db mice and HG-induced cardiomyocytes. MALAT1 regulated RhoA/ROCK pathway via sponging miR-185-5p in cardiomyocytes in HG. Knockdown of MALAT1 and fasudil all inhibited HG-induced oxidative stress, and alleviated imbalance of mitochondrial dynamics and mitochondrial dysfunction, accompanied by reduced cardiomyocyte apoptosis. MALAT1 activated the RhoA/ROCK pathway via sponging miR-185-5p and mediated HG-induced oxidative stress, mitochondrial damage and apoptosis of cardiomyocytes in mice.


Assuntos
MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose/genética , Estresse Oxidativo , Glucose/toxicidade , Glucose/metabolismo , Mitocôndrias/metabolismo
15.
Genes Genomics ; 45(8): 1003-1011, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37253907

RESUMO

BACKGROUND: MicroRNAs (miRNAs) can regulate expression of target genes at post transcriptional level, and mediate the pathophysiological process of many diseases. OBJECTIVE: The study will illuminate the miRNA expression profiles of diabetic cardiomyopathy (DCM), seeking probable biomarkers of DCM at early stage and determining a target for the treatment of DCM. METHODS: Db/db mice were used as an animal model of type 2 diabetes mellitus. At 22 weeks of age, cardiac function was evaluated by echocardiography, and the structural changes in myocardium were evaluated by HE staining and TEM. The miRNA expression profiles were detected using miRNA sequencing and differentially expressed miRNAs were validated by real-time PCR. Bioinformatic analysis was used to analyze target genes of these miRNAs and relevant pathways in DCM. RESULTS: The results showed that 40 miRNAs were differentially expressed, including 28 upregulated miRNAs and 12 downregulated miRNAs. GO and KEGG pathway analysis showed that the target genes of up-regulated miRNAs were involved in 66 pathways, including Wnt, p53 and calcium signaling pathways, as well as FOXO and apoptosis signaling pathways, etc. The target genes of down-regulated miRNAs were involved in 68 pathways, including mitophagy, Ras and MAPK signaling pathways, etc. Moreover, some differentially expressed miRNAs were found in myocardium of DCM for the first time, such as miR-7225-5p, miR-696, miR-3470a, miR-3470b, miR-6240, miR-6538, miR-5128, miR-1195, miR-203-3p and miR-330-5p. CONCLUSIONS: It is hoped that a few novel molecular pathways or targets of treatment for DCM would be found through understanding the expression features of miRNAs in diabetic myocardium.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , MicroRNAs , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Cardiomiopatias Diabéticas/genética , Miocárdio/metabolismo , Biologia Computacional
16.
J Colloid Interface Sci ; 646: 493-502, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209549

RESUMO

The exploration of anode materials that can store large-sized K-ion to solve the poor kinetics and large volume expansion issues has become the key scientific bottlenecks hindering the development of potassium-ion batteries (PIBs). Herein, ultrafine CoTe2 quantum rods physiochemically encapsulated by graphene and nitrogen-doped carbon (CoTe2@rGO@NC) are regarded as anode electrodes for PIBs. Dual physicochemical confinement and quantum size effect not only enhance electrochemical kinetics but also restrain large lattice stress during repeated K-ion insertion/extraction process. Superior electronic conductivity, K-ion adsorption, and diffusion ability can be acquired for CoTe2@rGO@NC, confirmed through first-principles calculations and kinetics study. K-ion insertion/extraction proceeds via a typical conversion mechanism relying on Co as the redox site, where the robust chemical bond of COCo plays an important role in maintaining the electrode stability. Accordingly, CoTe2@rGO@NC contributes a high initial capacity of 237.6 mAh·g-1 at 200 mA·g-1, a long lifetime over 500 cycles with low-capacity decay of 0.10% per cycle. This research will lay the materials science foundation for the construction of quantum-rod electrodes.

17.
J Endod ; 49(7): 852-860.e3, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150292

RESUMO

INTRODUCTION: Chondroitin sulfate (CS) is a major proteoglycan involved in the mineralization of the organic matrix of dentin. In this study, the roles of CS immobilized in cross-linked collagen I (Col I) hydrogels on odontogenic differentiation of dental pulp stem cells (DPSCs) and reparative dentin formation were investigated. METHODS: Different concentrations of CS were incorporated into the genipin-cross-linked Col I hydrogels (CS-0.05, CS-0.1, and CS-0.2, respectively). The influences of CS on the proliferation and odontogenic differentiation of DPSCs were investigated. Finally, the effect of the functionalized hydrogel on the formation of reparative dentin was analyzed in a rat pulp capping model in vivo. RESULTS: CS improved the proliferation of DPSCs seeded on the hydrogels (P < .05). CS also enhanced the mineralization activities and increased the expression levels of the odontogenic-related proteins of DPSCs on days 7 and 14 (P < .05). In vivo, CS-0.1 hydrogel induced reparative dentin formation with higher quality compared with mineral trioxide aggregate. CONCLUSIONS: CS immobilized in Col I hydrogels could induce odontogenic differentiation of DPSCs in vitro and promote homogeneous mineralized barrier formation in vivo. CS-Col I hydrogel has the potential for reparative dentin formation of high quality in direct pulp capping.


Assuntos
Polpa Dentária , Dentina Secundária , Ratos , Animais , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/metabolismo , Odontogênese , Diferenciação Celular , Colágeno Tipo I/farmacologia , Colágeno Tipo I/metabolismo , Fosfoproteínas/metabolismo , Células-Tronco , Hidrogéis/farmacologia , Células Cultivadas , Proliferação de Células
18.
J Environ Sci (China) ; 130: 102-113, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37032027

RESUMO

Monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs) are both well known as hazardous air pollutants and also important anthropogenic precursors of tropospheric ozone (O3) and secondary organic aerosols (SOA). In recent years, there have been intensive studies covering MAHs emission from various sources and their behavior under stimulated photochemical conditions. Yet in-situ measurements of PAHs presence and variations in ambient air are sparse. Herein we conducted large geometrical scale mobile measurements for 16 aromatic hydrocarbons (AHs, including 7 MAHs and 9 PAHs) in eastern China between October 27 and November 8, 2019. This unique dataset has allowed for some insights in terms of AHs concentration variations, accompanying chemical composition, source contributions and spatial distributions in eastern China. In general, AHs showed a clear concentration variability between the south and the north of the Yangtze River Delta (YRD). The concentrations of PAHs were approximately 9% of AHs, but contributed 23% of SOA formation potential. Source apportionment via positive matrix factorization (PMF) model revealed that industrial processes as the largest source (44%) of observed AHs, followed by solvent usage (21%), vehicle exhaust (19%), coal combustion (11%) and coking processes (6%). In the perspective of PAHs sources, coal combustion emissions were identified as the dominating factor of a share of 41%-52% in eastern China. Our findings complemented the simultaneously monitoring information of PAHs and MAHs in eastern China, revealed the importance of PAHs to SOA formation and highlighted the necessity of formulating strategies to reduce emissions from anthropogenic sources and reduce risks to human health.


Assuntos
Poluentes Atmosféricos , Ozônio , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Carvão Mineral/análise
19.
Int J Biol Macromol ; 237: 123944, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36898466

RESUMO

An ideal wound dressing should have excellent antimicrobial properties and provide a suitable microenvironment for regenerating damaged skin tissue. In this study, we utilized sericin to biosynthesize silver nanoparticles in situ and introduced curcumin to obtain Sericin-AgNPs/Curcumin (Se-Ag/Cur) antimicrobial agent. The hybrid antimicrobial agent was then encapsulated in a physically double cross-linking 3D structure network (Sodium alginate-Chitosan, SC) to obtain the SC/Se-Ag/Cur composite sponge. The 3D structural networks were constructed through electrostatic interactions between sodium alginate and chitosan and ionic interactions between sodium alginate and calcium ions. The prepared composite sponges have excellent hygroscopicity (contact angle 51.3° ± 5.6°), moisture retention ability, porosity (67.32 % ± 3.37 %), and mechanical properties (>0.7 MPa) and exhibit good antibacterial ability against Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). In addition, in vivo experiments have shown that the composite sponge promotes epithelial regeneration and collagen deposition in wounds infected with S. aureus or P. aeruginosa. Tissue immunofluorescence staining analysis confirmed that the SC/Se-Ag/Cur complex sponge stimulated upregulated expression of CD31 to promote angiogenesis while downregulating TNF-α expression to reduce inflammation. These advantages make it an ideal candidate for infectious wound repair materials, providing an effective repair strategy for clinical skin trauma infections.


Assuntos
Anti-Infecciosos , Quitosana , Curcumina , Nanopartículas Metálicas , Sericinas , Antibacterianos/química , Quitosana/química , Alginatos/química , Porosidade , Cicatrização , Nanopartículas Metálicas/química , Staphylococcus aureus , Prata/química
20.
J Transl Med ; 21(1): 159, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855123

RESUMO

BACKGROUND: Cytoplasmic activation/proliferation-associated protein-1 (Caprin-1) is implicated in cancer cell proliferation and tumorigenesis; however, its role in the development of esophageal carcinoma (ESCA) has not been examined. METHODS: Biological methods and data analysis were used to investigate the expression of Caprin-1 in ESCA tissue and cell lines. We comprehensively analyzed the mRNA expression and prognostic values, signalling pathways of CAPRIN1 in ESCA using public databases online. Biological functions of CAPRIN1 were performed by clorimetric growth assay, EdU staining, colony formation, flow cytometry, apoptosis analysis, Western blot, lactate detection assay, extracellular acidification rates. The underlying mechanism was determined via flow cytometric analysis, Western blot and rescue experiments. In addition, xenograft tumor model was constructed to verify the phenotypes upon CAPRIN1 silencing. RESULTS: Caprin-1 expression was significantly elevated in both ESCA tumor tissues and cell lines compared with that in normal adjacent tissues and fibroblasts. Increased CAPRIN1 mRNA expression was significantly associated with clinical prognosis and diagnostic accuracy. The GO enrichment and KEGG pathway analysis CAPRIN1 might be related to immune-related terms, protein binding processes, and metabolic pathways. A significant positive correlation was observed between high Caprin-1 protein levels and lymph node metastasis (P = 0.031), ki-67 (P = 0.023), and 18F- FDG PET/CT parameters (SUVmax (P = 0.002) and SUV mean (P = 0.005)) in 55 ESCA patients. At cut-off values of SUVmax 17.71 and SUVmean 10.14, 18F- FDG PET/CT imaging predicted Caprin-1 expression in ESCA samples with 70.8% sensitivity and 77.4% specificity. In vitro and in vivo assays showed that Caprin-1 knockdown affected ESCA tumor growth. Silencing Caprin-1 inhibited ESCA cell proliferation and glycolysis, and decreased the expression of methyltransferase-like 3 (METTL3) and Wilms' tumor 1-associating protein (WTAP). However, this effect could be partially reversed by the restoration of METTL3 and WTAP expression. CONCLUSIONS: Our data suggest that Caprin-1 could serve as a prognostic biomarker and has an oncogenic role in ESCA.


Assuntos
Carcinoma , Neoplasias Esofágicas , Humanos , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Esofágicas/genética , Proliferação de Células/genética , RNA Mensageiro , Metiltransferases/genética , Fatores de Processamento de RNA , Proteínas de Ciclo Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA