Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 14(5): 1906-1920, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35045148

RESUMO

Fe2O3 as an anode for lithium-ion batteries has attracted intense attention because of its high theoretical capacity, natural abundance, and good safety. However, the inferior cycling stability, low-rate performance, and limited composite varieties hinder the application of Fe2O3-based materials. In this work, an Fe2O3@COF-LZU1 (FO@LZU1) anode was prepared via an imine-based covalent organic framework (COF-LZU1) covering on the exterior surface of Fe2O3 after rational optimization. With its unique heterostructure, the COF-LZU1 layer not only effectively alleviated the volume expansion during cycling but also improved the charge-transfer capability because of the π-conjugated system. Moreover, the organic functional group (CN, benzene ring) for COF-LZU1 provided more redox-active sites for Li+ storage. Under the contributions of both Fe2O3 nanorods and COF-LZU1, the FO@LZU150% exhibited an ultrahigh initial capacity and long-term cycling performance with initial discharge capacities of 2143 and 2171 mA h g-1 after 300 cycles under 0.1 A g-1, and rate performance of 1310 and 501 mA h g-1 at 0.3 and 3 A g-1, respectively. In addition, a high retention capacity of 1185 mA h g-1 was achieved at 1 A g-1 after 500 cycles. Furthermore, a full-cell with the FO@LZU150% anode and LiCoO2 cathode exhibited superior cycling and rate performance, which still maintained a reversible capacity of 260 mA h g-1 after 200 cycles even at a current density of 1 A g-1. The proposed strategy offers a new perspective for exploring the high-rate capability and designability of Fe2O3-based electrode materials.

2.
ACS Appl Mater Interfaces ; 13(15): 18142-18151, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33843183

RESUMO

The use of toxic components and short longevity greatly restricted the commercial application of superhydrophobic surfaces in oil-water separation, antifouling, and self-cleaning. To address these concerns, a durable, robust, and fluorine-free superhydrophobic fabric is prepared on account of inspiration of nature. In this work, submicrometer-sized silica particles with different particle sizes are deposited onto cotton fabrics, followed by hydrophobic modification of poly(dimethylsiloxane) (PDMS), and consequently bonded the substrate and coating via powerful covalent bonds through a simple dip-coating technique. The rough surface with an imitated lotus-leaf-like hierarchical protrusion structure is constructed by deposited submicrometer-sized particles with different particle sizes, while the fabric with a low surface energy is achieved by the hydrophobic modification of PDMS. Ultimately, the fabricated fabric exhibits extraordinary superhydrophobicity with a high water contact angle (WCA) of 161° and a small sliding hysteresis angle (SHA) of 2.4°. Besides, considerable mechanical stability to withstand 130 sandpaper abrasion cycles and 40 washing cycles, and chemical resistance with sustained superhydrophobic property in various harsh environments (e.g., boiling water, strong acid/base solutions, and various organic solvents), are presented. Moreover, higher than 90% separation efficiency with a contact angle >150 ° is produced even after 50 cycles when the fabricated fabric serves as a filter during the oil-water separation besides its outstanding staining resistance and self-cleaning property.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA