Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Biomater ; 184: 383-396, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936753

RESUMO

Triple-negative breast cancer (TNBC) is a relatively "cold" tumour with low immunogenicity compared to other tumour types. Especially, the immune checkpoint inhibitors to treat metastatic TNBC only shows the modest immune response rates. Here, we used Chlorella vulgaris as a bioreactor to synthesize an efficient nanobomb (Bio-MnSe) aimed at eliciting systemic anti-tumour immune response. Despite possessing extremely low Mn content, Bio-MnSe effectively produced more ROS and activated stronger cGAS-STING signal pathway compared to pure Se nanoparticles and free Mn2+ ions, promoting the infiltration of natural killer (NK) cells, cytotoxic T lymphocytes (CTLs) in tumour, effectively turning "cold" tumour into "hot" tumour, and achieving strong antitumour immunotherapy. Additionally, the use of αPD-L1 as an immune checkpoint antagonist further increased the anti-tumour immune response of Bio-MnSe, resulting in enhanced anti-tumour effects. Doxorubicin (Dox), an immunogenic cell death (ICD) inducer, was combined with Bio-MnSe to form Bio-MnSe@Dox. This Bio-MnSe@Dox not only directly damaged tumour cells and induced tumour ICD but also promoted dendritic cell maturation, cytotoxic T lymphocyte infiltration, and NK cell recruitment, synergistically intensifying anti-tumour immune responses and suppressing tumour relapse and lung metastasis. Collectively, our findings propose an effective strategy for transforming 'cold' tumours to 'hot' ones, thereby advancing the development of anti-tumour immune drugs. STATEMENT OF SIGNIFICANCE: A biogenic MnSe (Bio-MnSe) nanocomposite was synthesized using Chlorella vulgaris as a bioreactor for enhanced immunotherapy of TNBC. Bio-MnSe demonstrated a stronger ability to activate the cGAS-STING signalling pathway and generate more ROS compared to pure Se nanoparticles and free Mn2+ ions. Apoptotic cells induced by Bio-MnSe released a significant amount of interferon, leading to the activation of T and natural killer (NK) cells, ultimately transforming immunologically 'cold' breast tumours to 'hot' tumours and enhancing the tumour's response to immune checkpoint inhibitors. The combination of Bio-MnSe with Dox or αPD-L1 further enhanced the anti-tumour immune response, fostering dendritic cell maturation, infiltration of cytotoxic T lymphocytes, and recruitment of NK cells, thereby enhancing the anti-tumour immunotherapy of TNBC.


Assuntos
Morte Celular Imunogênica , Manganês , Proteínas de Membrana , Nucleotidiltransferases , Transdução de Sinais , Animais , Feminino , Morte Celular Imunogênica/efeitos dos fármacos , Camundongos , Humanos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Manganês/química , Manganês/farmacologia , Doxorrubicina/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Selênio/química , Selênio/farmacologia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Antígeno B7-H1/metabolismo , Camundongos Endogâmicos BALB C , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos
2.
J Nanobiotechnology ; 22(1): 73, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374027

RESUMO

The formation of blood vessel system under a relatively higher Cu2+ ion level is an indispensable precondition for tumor proliferation and migration, which was assisted in forming the tumor immune microenvironment. Herein, a copper ions nano-reaper (LMDFP) is rationally designed not only for chelating copper ions in tumors, but also for combination with photothermal therapy (PTT) to improve antitumor efficiency. Under 808 nm laser irradiation, the fabricated nano-reaper converts light energy into thermal energy to kill tumor cells and promotes the release of D-penicillamine (DPA) in LMDFP. Photothermal properties of LMDFP can cause tumor ablation in situ, which further induces immunogenic cell death (ICD) to promote systematic antitumor immunity. The released DPA exerts an anti-angiogenesis effect on the tumor through chelating copper ions, and inhibits the expression of programmed death ligand 1 (PD-L1), which synergizes with PTT to enhance antitumor immunity and inhibit tumor metastasis. Meanwhile, the nanoplatform can emit near-infrared-IIb (NIR-IIb) fluorescence under 980 nm excitation, which can be used to track the nano-reaper and determine the optimal time point for PTT. Thus, the fabricated nano-reaper shows powerful potential in inhibiting tumor growth and metastasis, and holds great promise for the application of copper nanochelator in precise tumor treatment.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Fototerapia , Cobre/farmacologia , Fluorescência , Neoplasias/tratamento farmacológico , Íons , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Angew Chem Int Ed Engl ; 62(14): e202217812, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36757807

RESUMO

This contribution reports the efficient conversion of γ-valerolactone and its derivatives, abundant but unexplored renewable feedstocks, into sustainable and degradable polythioesters via the establishment of the first isomerization-driven ring-opening polymerizations (IROPs) of corresponding thionolactone intermediates. The key to this success relies on the development of a new simple and robust [Et3 O]+ [B(C6 F5 )4 ]- cationic initiator which possesses high activity, exclusive selectivity, living nature, and broad scope of thionolactones. A complete inversion of configuration during IROP of enantiopure γ-thionovalerolactone is also disclosed, affording isotactic semicrystalline polythioesters (Tm =87.0 °C) with mechanical property compared well to the representative commodity polyolefins. The formation of a highly crystalline supramolecular stereocomplex with enhanced thermal property (Tm =117.6 °C) has also been revealed.

4.
Nat Chem ; 14(3): 294-303, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34824460

RESUMO

The development of sustainable polymers that possess useful material properties competitive with existing petroleum-derived polymers is a crucial goal but remains a formidable challenge for polymer science. Here we demonstrate that irreversible ring-opening polymerization (IROP) of biomass-derived five-membered thionolactones is an effective and robust strategy for the polymerization of non-strained five-membered rings-these polymerizations are commonly thermodynamically forbidden under ambient conditions, at industrially relevant temperatures of 80-100 °C. Computational studies reveal that the selective IROP of these thionolactones is thermodynamically driven by S/O isomerization during the ring-opening process. IROP of γ-thionobutyrolactone, a representative non-strained thionolactone, affords a sustainable polymer from renewable resources that possesses external-stimuli-triggered degradability. This poly(thiolactone) also exhibits high performance, with its key thermal and mechanical properties comparing well to those of commercial petroleum-based low-density polyethylene. This IROP strategy will enable conversion of five-membered lactones, generally unachievable by other polymerization methods, into sustainable polymers with a range of potential applications.


Assuntos
Petróleo , Polímeros , Isomerismo , Lactonas , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA