Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 9(42): eadh2410, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862422

RESUMO

Quantum dot (QD) solids are promising optoelectronic materials; further advancing their device functionality requires understanding their energy transport mechanisms. The commonly invoked near-field Förster resonance energy transfer (FRET) theory often underestimates the exciton hopping rate in QD solids, yet no consensus exists on the underlying cause. In response, we use time-resolved ultrafast stimulated emission depletion (STED) microscopy, an ultrafast transformation of STED to spatiotemporally resolve exciton diffusion in tellurium-doped cadmium selenide-core/cadmium sulfide-shell QD superlattices. We measure the concomitant time-resolved exciton energy decay due to excitons sampling a heterogeneous energetic landscape within the superlattice. The heterogeneity is quantified by single-particle emission spectroscopy. This powerful multimodal set of observables provides sufficient constraints on a kinetic Monte Carlo simulation of exciton transport to elucidate a composite transport mechanism that includes both near-field FRET and previously neglected far-field emission/reabsorption contributions. Uncovering this mechanism offers a much-needed unified framework in which to characterize transport in QD solids and additional principles for device design.

3.
J Am Chem Soc ; 144(49): 22403-22408, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36416496

RESUMO

Although sulfide perovskites usually require high-temperature syntheses, we demonstrate that organosulfides can be used in the milder syntheses of halide perovskites. The zwitterionic organosulfide, cysteamine (CYS; +NH3(CH2)2S-), serves as both the X- site and A+ site in the ABX3 halide perovskites, yielding the first examples of 3D organosulfide-halide perovskites: (CYS)PbX2 (X- = Cl- or Br-). Notably, the band structures of (CYS)PbX2 capture the direct bandgaps and dispersive bands of APbX3 perovskites. The sulfur orbitals compose the top of the valence band in (CYS)PbX2, affording unusually small direct bandgaps of 2.31 and 2.16 eV for X- = Cl- and Br-, respectively, falling in the ideal range for the top absorber in a perovskite-based tandem solar cell. Measurements of the carrier dynamics in (CYS)PbCl2 suggest carrier trapping due to defects or lattice distortions. The highly desirable bandgaps, band dispersion, and improved stability of the organosulfide perovskites demonstrated here motivate the continued expansion and exploration of this new family of materials, particularly with respect to extracting photocurrent. Our strategy of combining the A+ and X- sites with zwitterions may offer more members in this family of mixed-anion 3D hybrid perovskites.


Assuntos
Compostos de Cálcio , Compostos Inorgânicos , Óxidos , Sulfetos
4.
J Phys Chem Lett ; 11(12): 4849-4858, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32510954

RESUMO

Semicrystalline polymers constitute some of the most widely used materials in the world, and their functional properties are intimately connected to their structure on a range of length scales. Many of these properties depend on the micro- and nanoscale heterogeneous distribution of crystalline and amorphous phases, but this renders the interpretation of ensemble averaged measurements challenging. We use superlocalized widefield single-particle tracking in conjunction with AFM phase imaging to correlate the crystalline morphology of lithium-triflate-doped poly(ethylene oxide) thin films to the motion of individual fluorescent probes at the nanoscale. The results demonstrate that probe motion is intrinsically isotropic in amorphous regions and that, without altering this intrinsic diffusivity, closely spaced, often parallel, crystallite fibers anisotropically constrain probe motion along intercalating amorphous channels. This constraint is emphasized by the agreement between crystallite and anisotropic probe trajectory orientations. This constraint is also emphasized by the extent of the trajectory confinement correlated to the width of the measured gaps between adjacent crystallites. This study illustrates with direct nanoscale correlations how controlled and periodic arrangement of crystalline domains is a promising design principle for mass transport in semicrystalline polymer materials without compromising their mechanical stability.

5.
J Phys Chem B ; 123(35): 7628-7639, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31402658

RESUMO

Water and ion dynamics in concentrated LiCl solutions were studied using ultrafast 2D IR spectroscopy with the methyl thiocyanate (MeSCN) CN stretch as the vibrational probe. The IR absorption spectrum of MeSCN has two peaks, one peak for water associated with the nitrogen lone pair of MeSCN (W) and the other peak corresponding to Li+ associated with the lone pair (L). To extract the spectral diffusion (structural dynamics) of W and L species, we developed a method that isolates the peak of interest by subtracting the 2D Gaussian proxies of multiple interfering peaks. Center line slope data (normalized frequency-frequency correlation function) for 2D bands from the W and L are fit with triexponential functions. The fastest component (1.1-1.6 ps) is assigned to local hydrogen bond length fluctuations. The intermediate timescale (∼4.0 ps) corresponds to the hydrogen bond network rearrangement. The slowest component decays in ∼40 ps and corresponds to ion pair and ion cluster dynamics. The very similar W and L spectral diffusion indicates that the motions of the water and ions are strongly coupled. Orientational relaxations of the W and L species were extracted using a new method to eliminate the effects of overlapping peaks. The results show that MeSCN bound to water undergoes orientational relaxation significantly faster than MeSCN bound to Li+. The orientational and spectral diffusion results are compared. A Stark coupling model is used to extract the root mean square average electric field caused by the ion clouds along the CN moiety as a function of concentration.

6.
ACS Cent Sci ; 5(7): 1269-1277, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31403075

RESUMO

Proton transfer in water is ubiquitous and a critical elementary event that, via proton hopping between water molecules, enables protons to diffuse much faster than other ions. The problem of the anomalous nature of proton transport in water was first identified by Grotthuss over 200 years ago. In spite of a vast amount of modern research effort, there are still many unanswered questions about proton transport in water. An experimental determination of the proton hopping time has remained elusive due to its ultrafast nature and the lack of direct experimental observables. Here, we use two-dimensional infrared spectroscopy to extract the chemical exchange rates between hydronium and water in acid solutions using a vibrational probe, methyl thiocyanate. Ab initio molecular dynamics (AIMD) simulations demonstrate that the chemical exchange is dominated by proton hopping. The observed experimental and simulated acid concentration dependence then allow us to extrapolate the measured single step proton hopping time to the dilute limit, which, within error, gives the same value as inferred from measurements of the proton mobility and NMR line width analysis. In addition to obtaining the proton hopping time in the dilute limit from direct measurements and AIMD simulations, the results indicate that proton hopping in dilute acid solutions is induced by the concerted multi-water molecule hydrogen bond rearrangement that occurs in pure water. This proposition on the dynamics that drive proton hopping is confirmed by a combination of experimental results from the literature.

7.
J Phys Chem B ; 122(46): 10582-10592, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30365321

RESUMO

Ion-molecule complex dynamics as well as water dynamics in concentrated lithium chloride (LiCl) solutions are examined using ultrafast two-dimensional infrared (2D IR) spectroscopy with the CN stretching mode of methyl thiocyanate (MeSCN) as the vibrational probe. In pure water, MeSCN has a narrow symmetric absorption line shape. 2D IR spectral diffusion measurements of the CN stretch give the identical time dependence of water dynamics, as previously observed using the OD stretch of HOD in H2O. In concentrated LiCl solutions, the IR absorption spectrum of MeSCN displays two distinct peaks, one corresponding to water H-bonded to the N lone pair of MeSCN (W) and the other corresponding to Li+ associated with the N (L). These two species are in equilibrium, and switching of the CN bonding partner from Li+ to H2O and vice versa was observed and explicated with 2D IR chemical exchange spectroscopy. The MeSCN·Li+ complex dissociation time constant, τLW, and the MeSCN·H2O dissociation time constant, τWL, were determined. The observed τLW chemical exchange dissociation time constant changes from 60 to 40 ps as the LiCl concentration decreases from ∼10.7 to ∼7.7 M, mainly due to the increase of the water concentration as the LiCl concentration is reduced. The observed time constants are independent of the model for the chemical reaction. With the assumption of a simple chemical equation, MeSCN·Li+ + H2O ⇄ MeSCN·H2O + Li+, the equilibrium equation rate constants were obtained from the observed chemical exchange time constants. It was determined that the equilibrium rate constants barely change even though the viscosity changes by a factor of 2 and the ionic strength changes by a factor of 1.4. Extrapolation to dilute LiCl solution estimates the τLW to be ∼30 ps. The orientational relaxation (anisotropy decay) of both the W and L complexes was measured using polarization selective 2D IR experiments. The lithium-bonded species undergoes orientational relaxation ∼3 times slower than the water-bonded species in each LiCl solution studied. The difference demonstrates the distinct interactions with the medium experienced by the neutral and charged species in the concentrated salt solutions.

8.
J Am Chem Soc ; 140(30): 9466-9477, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29985609

RESUMO

Polymeric hydrogels have wide applications including electrophoresis, biocompatible materials, water superadsorbents, and contact lenses. The properties of hydrogels involve the poorly characterized molecular dynamics of water and solutes trapped within the three-dimensional cross-linked polymer networks. Here we apply ultrafast two-dimensional infrared (2D IR) vibrational echo and polarization-selective pump-probe (PSPP) spectroscopies to investigate the ultrafast molecular dynamics of water and a small molecular anion solute, selenocyanate (SeCN-), in polyacrylamide hydrogels. For all mass concentrations of polymer studied (5% and above), the hydrogen-bonding network reorganization (spectral diffusion) dynamics and reorientation dynamics reported by both water and SeCN- solvated by water are significantly slower than in bulk water. As the polymer mass concentration increases, molecular dynamics in the hydrogels slow further. The magnitudes of the slowing, measured with both water and SeCN-, are similar. However, the entire hydrogen-bonding network of water molecules appears to slow down as a single ensemble, without a difference between the core water population and the interface water population at the polymer-water surface. In contrast, the dissolved SeCN- do exhibit two-component dynamics, where the major component is assigned to the anions fully solvated in the confined water nanopools. The slower component has a small amplitude which is correlated with the polymer mass concentration and is assigned to adsorbed anions strongly interacting with the polymer fiber networks.

9.
J Am Chem Soc ; 139(46): 16518-16527, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29072913

RESUMO

Monolayers play important roles in naturally occurring phenomena and technological processes. Monolayers at the air/water interface have received considerable attention, yet it has proven difficult to measure monolayer and interfacial molecular dynamics. Here we employ a new technique, reflection enhanced two-dimensional infrared (2D IR) spectroscopy, on a carbonyl stretching mode of tricarbonylchloro-9-octadecylamino-4,5-diazafluorenerhenium(I) (TReF18) monolayers at two surface densities. Comparison to experiments on a water-soluble version of the metal carbonyl headgroup shows that water hydrogen bond rearrangement dynamics slow from 1.5 ps in bulk water to 3.1 ps for interfacial water. Longer time scale fluctuations were also observed and attributed to fluctuations of the number of hydrogen bonds formed between water and the three carbonyls of TReF18. At the higher surface density, two types of TReF18 minor structures are observed in addition to the main structure. The reflection method can take usable 2D IR spectra on the monolayer within 8 s, enabling us to track the fluctuating minor structures' appearance and disappearance on a tens of seconds time scale. 2D IR chemical exchange spectroscopy further shows these structures interconvert in 30 ps. Finally, 2D spectral line shape evolution reveals that it takes the monolayers hours to reach macroscopic structural equilibrium.

10.
J Phys Chem B ; 121(17): 4530-4537, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28379003

RESUMO

The dynamics of water molecules near the surfactant interface in large Aerosol-OT reverse micelles (RMs) (w0 = 16-25) was investigated with IR polarization-selective pump-probe experiments using the SeCN- anion as a vibrational probe. Linear absorption spectra of RMs (w0 = 25-2) can be decomposed into the weighted sum of the SeCN- spectra in bulk water and the spectrum of the SeCN- anion interacting with the interfacial sulfonate head groups (w0 = 1). The spectra of the large RMs, w0 ≥ 16, are overwhelmingly dominated by the bulk water component. Anisotropy decays (orientational relaxation) of the anion for w0 ≥ 16 displayed bulk water relaxation (1.4 and 4.5 ps) plus an additional slow decay with a time constant of ∼13 ps. The amplitude of the slow decay was too large to be associated with SeCN- in contact with the interface on the basis of the linear spectrum decomposition. The results indicate that the observed slow components arise from SeCN- in a water boundary layer, in which water molecules are perturbed by the interface but are not directly associated with it. This layer is the transition between water in direct contact with the interface and bulk water in the large RM cores. In the boundary layer, the water dynamics is slow compared to that in bulk water.

11.
J Am Chem Soc ; 138(30): 9694-703, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27385320

RESUMO

Water of hydration plays an important role in minerals, determining their crystal structures and physical properties. Here ultrafast nonlinear infrared (IR) techniques, two-dimensional infrared (2D IR) and polarization selective pump-probe (PSPP) spectroscopies, were used to measure the dynamics and disorder of water of hydration in two minerals, gypsum (CaSO4·2H2O) and bassanite (CaSO4·0.5H2O). 2D IR spectra revealed that water arrangement in freshly precipitated gypsum contained a small amount of inhomogeneity. Following annealing at 348 K, water molecules became highly ordered; the 2D IR spectrum became homogeneously broadened (motional narrowed). PSPP measurements observed only inertial orientational relaxation. In contrast, water in bassanite's tubular channels is dynamically disordered. 2D IR spectra showed a significant amount of inhomogeneous broadening caused by a range of water configurations. At 298 K, water dynamics cause spectral diffusion that sampled a portion of the inhomogeneous line width on the time scale of ∼30 ps, while the rest of inhomogeneity is static on the time scale of the measurements. At higher temperature, the dynamics become faster. Spectral diffusion accelerates, and a portion of the lower temperature spectral diffusion became motionally narrowed. At sufficiently high temperature, all of the dynamics that produced spectral diffusion at lower temperatures became motionally narrowed, and only homogeneous broadening and static inhomogeneity were observed. Water angular motions in bassanite exhibit temperature-dependent diffusive orientational relaxation in a restricted cone of angles. The experiments were made possible by eliminating the vast amount of scattered light produced by the granulated powder samples using phase cycling methods.

12.
Proc Natl Acad Sci U S A ; 113(18): 4929-34, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27044113

RESUMO

Functionalized self-assembled monolayers (SAMs) are the focus of ongoing investigations because they can be chemically tuned to control their structure and dynamics for a wide variety of applications, including electrochemistry, catalysis, and as models of biological interfaces. Here we combine reflection 2D infrared vibrational echo spectroscopy (R-2D IR) and molecular dynamics simulations to determine the relationship between the structures of functionalized alkanethiol SAMs on gold surfaces and their underlying molecular motions on timescales of tens to hundreds of picoseconds. We find that at higher head group density, the monolayers have more disorder in the alkyl chain packing and faster dynamics. The dynamics of alkanethiol SAMs on gold are much slower than the dynamics of alkylsiloxane SAMs on silica. Using the simulations, we assess how the different molecular motions of the alkyl chain monolayers give rise to the dynamics observed in the experiments.

13.
J Phys Chem B ; 119(42): 13407-15, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26434772

RESUMO

The dynamic nature of hydrogen bonding between a molecular anion, selenocyanate (SeCN(-)), and water in aqueous solution (D2O) is addressed using FT-IR spectroscopy, two-dimensional infrared (2D IR) vibrational echo spectroscopy, and polarization selective IR pump-probe (PSPP) experiments performed on the CN stretching mode. The CN absorption spectrum is asymmetric with a wing on the low frequency (red) side of the line in contrast to the spectrum in the absence of hydrogen bonding. It is shown that the red wing is the result of an increase in the CN stretch transition dipole moment due to the effect of hydrogen bonding (non-Condon effect). This non-Condon effect is similar in nature to observations on pure water and other nonionic systems where hydrogen bonding enhances the extinction coefficient. The 2D IR measurements of spectral diffusion (solvent structural evolution) yield a time constant of 1.5 ps, which is within error the same as that of the OH stretch of HOD in D2O (1.4 ps). The orientational relaxation of SeCN(-) measured by PSPP experiments is long (4.04 ps) compared to the spectral diffusion time. The population decay at or near the absorption line center is a single-exponential decay of 37.4 ± 0.3 ps, the vibrational lifetime. However, on the red side of the line the decay is biexponential with a low amplitude, fast component; on the blue side of the line there is a low amplitude, fast growth followed by the lifetime decay. Both of the fast components have 1.5 ps time constants, which is the spectral diffusion time. The fast components of the population decays are the results of the non-Condon effect that causes the red side of the line to be over pumped by the pump pulse. Spectral diffusion then produces the fast decay component on the red side of the line and the growth on the blue side of the line as the excess initial population on the red side produces a net population flow from red to blue.

14.
J Phys Chem Lett ; 4(2): 304-9, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-26283439

RESUMO

The amplitude of chemical relaxations in fluorescence correlation spectroscopy (FCS) is an important parameter that directly relates to not only the equilibrium constant of the relaxations but also the number of individual fluorophores that diffuse together. In this Letter we answer the question how exactly the amplitude of the relaxations in FCS changes with respect to the number of identical fluorophores on one cargo. We anchored tetramethylrhodamine molecules onto each arm of a DNA Holliday junction molecule so that the codiffusing dyes were capable of performing independent fluorescent fluctuations. We found that the amplitudes of the relaxations were inversely proportional to the number of the dyes on each cargo molecule, well agreeing with the theoretical prediction derived in this Letter. The result provides a guideline for the FCS data analysis and points out a simple way to determine the number of molecules that a cargo carries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA