Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(6): 5356-5367, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38269413

RESUMO

Boron has been found to be able to form multiple bonds with lead. To probe Pb-B bonding, here we report an investigation of three Pb-doped boron clusters, PbB2-, PbB3O-, and PbB4O2-, which are produced by a laser ablation cluster source and characterized by photoelectron spectroscopy and ab initio calculations. The most stable structures of PbB2-, PbB3O-, and PbB4O2- are found to follow the formula, [PbB2(BO)n]- (n = 0-2), with zero, one, and two boronyl ligands coordinated to a triangular and aromatic PbB2 core, respectively. The PbB2- cluster contains a BB double bond and two Pb-B single bonds. The coordination of BO is observed to weaken Pb-B bonding but strengthen the BB bond in [PbB2(BO)n]- (n = 1, 2). The anionic [PbB2(BO)2]- and its corresponding neutral closed-shell [PbB2(BO)2] contain a BB triple bond. A low-lying Y-shaped isomer is also observed for PbB4O2-, consisting of a central sp2 hybridized B atom bonded to two boronyl ligands and a PbB unit.

2.
RSC Adv ; 13(34): 23984-23990, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577084

RESUMO

Searching for the maximum coordination number (CN) in planar species with novel bonding patterns has fascinated chemists for many years. Using the experimentally observed polyynic cyclo[18]carbon D9h C18 and theoretically predicted polyynic cyclo[14]carbon D7h C14 as effective ligands and based on extensive first-principles theory calculations, we predict herein their perfect planar alkaline-metal-centered complexes D9h Cs©C18+ (1) and D7h Na©C14+ (4) which as the global minima of the systems possess the record coordination numbers of CN = 18 and 14 in planar polyynic species, respectively. More interestingly, detailed energy decomposition and adaptive natural density partitioning bonding analyses indicate that the hypercoordinate alkaline-metal centers in these complexes exhibit obvious transition metal behaviors, with effective in-plane (π-6s)σ, (π-7p)σ, and (π-5d)σ coordination bonds formed in Cs©C18+ (1) and (π-3s)σ, (π-3p)σ, and (π-3d)σ coordination interactions fabricated in Na©C14+ (4) to dominate the overall attractive interactions between the metal center and its cyclo[n]carbon ligand. Similarly, alkaline-metal-centered planar Cs Cs©C17B (2), C2v Cs©C17- (3), C2v Na©C13B (5), and C2v Na©C13- (6) have also been obtained with CN = 18, 17, 14, and 13, respectively.

3.
Commun Chem ; 5(1): 25, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36697605

RESUMO

Despite its electron deficiency, boron can form multiple bonds with a variety of elements. However, multiple bonds between boron and main-group metal elements are relatively rare. Here we report the observation of boron-lead multiple bonds in PbB2O- and PbB3O2-, which are produced and characterized in a cluster beam. PbB2O- is found to have an open-shell linear structure, in which the bond order of B☱Pb is 2.5, while the closed-shell [Pb≡B-B≡O]2- contains a B≡Pb triple bond. PbB3O2- is shown to have a Y-shaped structure with a terminal B = Pb double bond coordinated by two boronyl ligands. Comparison between [Pb≡B-B≡O]2-/[Pb=B(B≡O)2]- and the isoelectronic [Pb≡B-C≡O]-/[Pb=B(C≡O)2]+ carbonyl counterparts further reveals transition-metal-like behaviors for the central B atoms. Additional theoretical studies show that Ge and Sn can form similar boron species as Pb, suggesting the possibilities to synthesize new compounds containing multiple boron bonds with heavy group-14 elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA