Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Environ Sci (China) ; 147: 462-473, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003062

RESUMO

Lake Baiyangdian is one of China's largest macrophyte - derived lakes, facing severe challenges related to water quality maintenance and eutrophication prevention. Dissolved organic matter (DOM) was a huge carbon pool and its abundance, property, and transformation played important roles in the biogeochemical cycle and energy flow in lake ecosystems. In this study, Lake Baiyangdian was divided into four distinct areas: Unartificial Area (UA), Village Area (VA), Tourism Area (TA), and Breeding Area (BA). We examined the diversity of DOM properties and sources across these functional areas. Our findings reveal that DOM in this lake is predominantly composed of protein - like substances, as determined by excitation - emission matrix and parallel factor analysis (EEM - PARAFAC). Notably, the exogenous tyrosine-like component C1 showed a stronger presence in VA and BA compared to UA and TA. Ultrahigh - resolution mass spectrometry (FT - ICR MS) unveiled a similar DOM molecular composition pattern across different functional areas due to the high relative abundances of lignan compounds, suggesting that macrophytes significantly influence the material structure of DOM. DOM properties exhibited specific associations with water quality indicators in various functional areas, as indicated by the Mantel test. The connections between DOM properties and NO3N and NH3N were more pronounced in VA and BA than in UA and TA. Our results underscore the viability of using DOM as an indicator for more precise and scientific water quality management.


Assuntos
Monitoramento Ambiental , Lagos , Lagos/química , China , Monitoramento Ambiental/métodos , Eutrofização , Substâncias Húmicas/análise , Qualidade da Água , Espectrometria de Massas/métodos , Poluentes Químicos da Água/análise , Ecossistema
2.
Ecotoxicol Environ Saf ; 273: 116158, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417316

RESUMO

Organophosphorus flame retardants (OPFRs) have been frequently detected with relatively high concentrations in various environmental media and are considered emerging environmental pollutants. However, their biological effect and underlying mechanism is still unclear, and whether chlorinated OPFRs (Cl-OPFRs) cause adverse outcomes with the same molecular initial events or share the same key events (KEs) remains unknown. In this study, in vitro bioassays were conducted to analyze the cytotoxicity, mitochondrial impairment, DNA damage and molecular mechanisms of two Cl-OPFRs. The results showed that these two Cl-OPFRs, which have similar structures, induced severe cellular and molecular damages via different underlying mechanisms. Both tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) (TCPP) induced oxidative stress-mediated mitochondrial impairment and DNA damage, as shown by the overproduction of intracellular reactive oxygen species (ROS) and mitochondrial superoxide. Furthermore, the DNA damage caused by TCPP resulted in p53/p21-mediated cell cycle arrest, as evidenced by flow cytometry and real-time PCR. At the cellular and molecular levels, TCPP increased the sub-G1 apoptotic peak and upregulated the p53/Bax apoptosis pathway, possibly resulted in apoptosis associated with its stronger cytotoxicity. Although structurally similar to TCPP, TCEP did not induce mitochondrial impairment and DNA damage by the same KEs. These results provide insight into the toxicity of Cl-OPFRs with similar structures but different mechanisms, which is of great significance for constructing adverse outcome pathways or determining intermediate KEs.


Assuntos
Retardadores de Chama , Compostos Organofosforados , Fosfinas , Compostos Organofosforados/toxicidade , Retardadores de Chama/toxicidade , Proteína Supressora de Tumor p53/genética , Organofosfatos/toxicidade , Dano ao DNA
3.
J Hazard Mater ; 465: 133390, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38163409

RESUMO

Tetrabromobisphenol A (TBBPA) analogues have been investigated for their prevalent occurrence in environments and potential hazardous effects to humans and wildlife; however, there is still limited knowledge regarding their toxicokinetics and trophic transfer in aquatic food chains. Using a developed toxicokinetic model framework, we quantified the bioaccumulation, biotransformation and trophic transfer of tetrabromobisphenol S (TBBPS) and tetrabromobisphenol A di(allyl ether) (TBBPA-DAE) during trophic transfer from brine shrimp (Artemia salina) to zebrafish (Danio rerio). The results showed that the two TBBPA analogues could be readily accumulated by brine shrimp, and the estimated bioconcentration factor (BCF) value of TBBPS (5.68 L kg-1 ww) was higher than that of TBBPA-DAE (1.04 L kg-1 ww). The assimilation efficiency (AE) of TBBPA-DAE in zebrafish fed brine shrimp was calculated to be 16.3%, resulting in a low whole-body biomagnification factor (BMF) in fish (0.684 g g-1 ww). Based on the transformation products screened using ultra-high-performance liquid chromatograph-high resolution mass spectrometry (UPLC-HRMS), oxidative debromination and hydrolysis were identified as the major transformation pathways of TBBPS, while the biotransformation of TBBPA-DAE mainly took place through ether bond breaking and phase-II metabolism. Lower accumulation of TBBPA as a metabolite than its parent chemical was observed in both brine shrimp and zebrafish, with metabolite parent concentration factors (MPCFs) < 1. The investigated BCFs for shrimp of the two TBBPA analogues were only 3.77 × 10-10 - 5.59 × 10-3 times of the theoretical Kshrimp-water based on the polyparameter linear free energy relationships (pp-LFERs) model, and the BMF of TBBPA-DAE for fish was 0.299 times of the predicted Kshrimp-fish. Overall, these results indicated the potential of the trophic transfer in bioaccumulation of specific TBBPA analogues in higher trophic-level aquatic organisms and pointed out biotransformation as an important mechanism in regulating their bioaccumulation processes. ENVIRONMENTAL IMPLICATION: The internal concentration of a pollutant in the body determines its toxicity to organisms, while bioaccumulation and trophic transfer play important roles in elucidating its risks to ecosystems. Tetrabromobisphenol A (TBBPA) analogues have been extensively investigated for their adverse effects on humans and wildlife; however, there is still limited knowledge regarding their toxicokinetics and trophic transfer in aquatic food chains. This study investigated the bioaccumulation, biotransformation and trophic transfer of TBBPS and TBBPA-DAE in a simulated di-trophic food chain. This state-of-art study will provide a reference for further research on this kind of emerging pollutant in aquatic environments.


Assuntos
Poluentes Ambientais , Perciformes , Bifenil Polibromatos , Poluentes Químicos da Água , Animais , Humanos , Cadeia Alimentar , Bioacumulação , Ecossistema , Peixe-Zebra/metabolismo , Biotransformação , Perciformes/metabolismo , Poluentes Ambientais/análise , Éteres , Poluentes Químicos da Água/análise
4.
J Hazard Mater ; 466: 133543, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262318

RESUMO

The prevalence of organophosphate esters (OPEs) in the global environment is increasing, which aligns with the decline in the usage of polybrominated diphenyl ethers (PBDEs). PBDEs, a category of flame retardants, were banned and classified as persistent organic pollutants (POPs) through the Stockholm Convention due to their toxic and persistent properties. Despite a lack of comprehensive understanding of their ecological and health consequences, OPEs were adopted as replacements for PBDEs. This research aims to offer a comparative assessment of PBDEs and OPEs in various domains, specifically focusing on their persistence, bioaccumulation, and toxicity (PBT) properties. This study explored physicochemical properties (such as molecular weight, octanol-water partition coefficient, octanol-air partition coefficient, Henry's law constant, and vapor pressures), environmental behaviors, global concentrations in environmental matrices (air, water, and soil), toxicities, bioaccumulation, and trophic transfer mechanisms of both groups of compounds. Based on the comparison and analysis of environmental and toxicological data, we evaluate whether OPEs represent another instance of regrettable substitution and global contamination as much as PBDEs. Our findings indicate that the physical and chemical characteristics, environmental behaviors, and global concentrations of PBDEs and OPEs, are similar and overlap in many instances. Notably, OPE concentrations have even surged by orders of several magnitude compared to PBDEs in certain pristine regions like the Arctic and Antarctic, implying long-range transport. In many instances, air and water concentrations of OPEs have been increased than PBDEs. While the bioaccumulation factors (BAFs) of PBDEs (ranging from 4.8 to 7.5) are slightly elevated compared to OPEs (-0.5 to 5.36) in aquatic environments, both groups of compounds exhibit BAF values beyond the threshold of 5000 L/kg (log10 BAF > 3.7). Similarly, the trophic magnification factors (TMFs) for PBDEs (ranging from 0.39 to 4.44) slightly surpass those for OPEs (ranging from 1.06 to 3.5) in all cases. Metabolic biotransformation rates (LogKM) and hydrophobicity are potentially major factors deciding their trophic magnification potential. However, many compounds of PBDEs and OPEs show TMF values higher than 1, indicating biomagnification potential. Collectively, all data suggest that PBDEs and OPEs have the potential to bioaccumulate and transfer through the food chain. OPEs and PBDEs present a myriad of toxicity endpoints, with notable overlaps encompassing reproductive issues, oxidative stress, developmental defects, liver dysfunction, DNA damage, neurological toxicity, reproductive anomalies, carcinogenic effects, and behavior changes. Based on our investigation and comparative analysis, we conclude that substituting PBDEs with OPEs is regrettable based on PBT properties, underscoring the urgency for policy reforms and effective management strategies. Addressing this predicament before an exacerbation of global contamination is imperative.


Assuntos
Retardadores de Chama , Éteres Difenil Halogenados , Éteres Difenil Halogenados/toxicidade , Éteres Difenil Halogenados/análise , Monitoramento Ambiental , Organofosfatos/análise , Água/análise , Retardadores de Chama/toxicidade , Retardadores de Chama/análise , Octanóis , Ésteres/toxicidade
5.
Environ Sci Technol ; 57(42): 15846-15857, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37818715

RESUMO

Limited toxic and ecological studies were focused on physical sunscreen that is considered to have "safer performance", in which nanosize zinc oxide (nZnO) and nanosize titanium dioxide (nTiO2) generally are added as ultraviolet filters. Herein, the common button coral Zoanthus sp. was newly used to assess the toxic effects and underlying mechanisms of physical sunscreen. Results showed that physical sunscreen induced severe growth inhibition effects and largely compelled the symbiotic zooxanthellae, indicating that their symbiotic systems were threatened and, also, that neural and photosynthesis functions were influenced. Zn2+ toxicity and bioaccumulation were identified as the main toxic mechanisms, and nTiO2 particles released from physical sunscreen also displayed limited bioattachment and toxicity. Oxidative stress, determined by increased reactive oxygen species, superoxide dismutase, and malondialdehyde content, was indicated as another important toxic mechanism. Furthermore, when Zoanthus sp. was restored, the inhibited individual coral could be largely recovered after a short (3 d) exposure time; however, a longer exposure time damaged the coral irretrievably, which revealed the latent environmental risks of physical sunscreen. This study investigated the toxic effect of physical sunscreen on Zoanthus sp. in a relatively comprehensive manner, thus providing new insights into the toxic response of sunscreen on marine organisms.


Assuntos
Antozoários , Óxido de Zinco , Animais , Protetores Solares/toxicidade , Antozoários/fisiologia , Óxido de Zinco/toxicidade , Estresse Oxidativo , Espécies Reativas de Oxigênio/farmacologia
6.
Environ Res ; 237(Pt 2): 116954, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619629

RESUMO

Understanding the assembly and turnover of microbial communities is crucial for gaining insights into the diversity and functioning of lake ecosystems, a fundamental and central issue in microbial ecology. The ecosystem of Taihu Lake has been significantly jeopardized due to urbanization and industrialization. In this study, we examined the diversity, assembly, and turnover of bacterial and fungal communities in Taihu Lake sediment. The results revealed strong bacterial stochasticity and fast fungal turnover in the sediment. Significant heterogeneity was observed among all sediment samples in terms of environmental factors, especially ORP, TOC, and TN, as well as microbial community composition and alpha diversity. For instance, the fungal richness index exhibited an approximate 3-fold variation. Among the environmental factors, TOC, TN, and pH had a more pronounced influence on the bacterial community composition compared to the fungal community composition. Interestingly, species replacement played a dominant role in microbial beta diversity, with fungi exhibiting a stronger pattern. In contrast, stochastic processes governed the community assembly of both bacteria and fungi, but were more pronounced for bacteria (R2 = 0.7 vs. 0.5). These findings deepen the understanding of microbial assembly and turnover in sediments under environmental stress and provide essential insights for maintaining the multifunctionality of lake ecosystems.

7.
Nanomaterials (Basel) ; 12(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35215026

RESUMO

An increasing number of inorganic ultraviolet filters (UVFs), such as nanosized zinc oxide (nZnO) and titanium dioxide (nTiO2), are formulated in sunscreens because of their broad UV spectrum sunlight protection and because they limit skin damage. However, sunscreen-derived inorganic UVFs are considered to be emerging contaminants; in particular, nZnO and nTiO2 UVFs have been shown to undergo absorption and bioaccumulation, release metal ions, and generate reactive oxygen species, which cause negative effects on aquatic organisms. We comprehensively reviewed the current study status of the environmental sources, occurrences, behaviors, and impacts of sunscreen-derived inorganic UVFs in aquatic environments. We find that the associated primary nanoparticle characteristics and coating materials significantly affect the environmental behavior and fate of inorganic UVFs. The consequential ecotoxicological risks and underlying mechanisms are discussed at the individual and trophic transfer levels. Due to their persistence and bioaccumulation, more attention and efforts should be redirected to investigating the sources, fate, and trophic transfer of inorganic UVFs in ecosystems.

8.
Chemosphere ; 248: 126026, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32006839

RESUMO

Phosphorus-containing flame retardants (PFRs) have been frequently detected in various environmental samples at relatively high concentrations and are considered emerging environmental pollutants. However, their biological effects and the underlying mechanism remain unclear, especially alkyl-PFRs. In this study, a battery of in vitro bioassays was conducted to analyze the cytotoxicity, oxidative stress, mitochondrial impairment, DNA damage and the involved molecular mechanisms of several selected alkyl-PFRs. Results showed that alkyl-PFRs induced structural related toxicity, where alkyl-PFRs with higher logKow values induced higher cytotoxicity. Long-chain alkyl-PFRs caused mitochondrial and DNA damage, resulting from intracellular reactive oxygen species (ROS) and mitochondrial superoxide overproduction; while short-chain alkyl-PFRs displayed adverse outcomes by significantly impairing mitochondria without obvious ROS generation. In addition, alkyl-PFRs caused DNA damage-induced cell cycle arrest, as determined by flow cytometry, and transcriptionally upregulated key transcription factors in p53/p21-mediated cell cycle pathways. Moreover, compared to the control condition, triisobutyl phosphate and trimethyl phosphate exposure increased the sub-G1 apoptotic peak and upregulated the p53/bax apoptosis pathway, indicating potential cell apoptosis at the cellular and molecular levels. These results provide insight into PFR toxicity and the involved mode of action and indicate the mitochondria is an important target for some alkyl-PFRs.


Assuntos
Retardadores de Chama/toxicidade , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células A549 , Dano ao DNA , Poluentes Ambientais/toxicidade , Humanos , Mitocôndrias/efeitos dos fármacos , Organofosfatos/toxicidade , Fósforo/química , Testes de Toxicidade , Fatores de Transcrição/genética
9.
J Environ Sci (China) ; 82: 70-81, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31133271

RESUMO

Surfactants such as alkylphenol polyethoxylates (APEOs) and nonylphenol ethoxylates (NPEOs) are commonly used worldwide, but the majority of these compounds, together with their metabolites, have been reported to induce severe biological toxicity. Here, we evaluated for the first time the cytotoxicity, genotoxicity and mitochondrial damage in Chinese hamster ovary (CHO-K1) cells caused by a novel non-ionic surfactant, vanillin ethoxylates (VAEOs), an alternative to APEOs. In parallel, the same in vitro bioassays were conducted on NPEOs along with their metabolic byproducts 4-nonylphenol (4-NP) and vanillin. The results showed that the cytotoxic potency order was NPEOs > 4-NP > VAEOs>vanillin using CCK-8 assays. Also, 4-NP showed potential direct DNA damage in SOS/umu tests, whereas NPEOs, VAEOs and vanillin showed no positive result with and without S9 addition. In addition, none of the test compounds showed obvious genotoxic effects with low olive tail moment value using comet assays. However, all test compounds were shown to cause mitochondrial impairment by increasing mitochondrial mass and decreasing mitochondrial membrane potential in a concentration-dependent manner. And further analysis of reactive oxygen species (ROS) and mitochondrial superoxide (MNSOD) measurement showed that mitochondrial impairment was induced by oxidative stress with intracellular ROS and MNSOD overproduction. It's worth noting that VAEOs and vanillin cause relative lower cytotoxic, genotoxic and mitochondrial damage effects than NPEOs and 4-NP, indicating that VAEOs have the potential to substitute NPEOs as suitable surfactants. Take together, this study elucidates the toxicity profiles of VAEOs and NPEOs relatively comprehensively, and further toxicity analyses are suggested in the population, community and ecosystem.


Assuntos
Benzaldeídos/toxicidade , Fenóis/toxicidade , Tensoativos/toxicidade , Testes de Toxicidade , Animais , Células CHO , Cricetinae , Cricetulus , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
10.
Environ Pollut ; 250: 58-67, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30981936

RESUMO

Aryl phosphorus-containing flame retardants (aryl-PFRs) have been frequently detected with increasingly used worldwide as one of alternatives for brominated flame retardants. However, information on their adverse effects on human health and ecosystem is insufficient, with limited study on their molecular mode of action in vitro. In this study, the cytotoxicity, DNA damage, mitochondrial impairment and the involved molecular mechanisms of certain frequently detectable aryl-PFRs, including 2-ethylhexyldiphenyl phosphate (EHDPP), methyl diphenyl phosphate (MDPP), bisphenol-A bis (diphenyl phosphate) (BDP), isodecyl diphenyl phosphate (IDPP), cresyl diphenyl phosphate (CDP) and the structurally similar and widely used organophosphorus pesticide chlorpyrifos (CPF), were evaluated in A549 cells using high-content screening (HCS) system. Aryl-PFRs showed different lethal concentration 50 (LC50) values ranging from 97.94 to 546.85 µM in A549 cells using CCK-8 assay. EHDPP, IDPP, CDP, MDPP and CPF demonstrated an ability to induce DNA damage, evidenced by increased DNA content and S phase-reducing cell cycle arrest effect using fluorophore dye cocktail assay. Additionally, the selected aryl-PFRs induced mitochondrial impairment by the increasing mitochondrial mass and decreasing mitochondrial membrane potential. Moreover, BDP, MDPP, and CDP, which contain short alkyl chains showed their potential oxidative stress with intracellular ROS and mitochondrial superoxide overproduction from an initially relatively low concentration. Additionally, based on the promotion of firefly luminescence in p53-transfected A549 cells, p53 activation was found to be involved in aryl-PFRs-induced DNA damage. Further real-time PCR results showed that all selected aryl-PFRs triggered p53/p21/gadd45ß-, and p53/p21/mdm2-mediated cell cycle pathways, and the p53/bax mediated apoptosis pathway to induce DNA damage and cytotoxic effects. These results suggest that aryl-PFRs (e.g., BDP, MDPP, CDP) cause oxidative stress-mediated DNA damage and mitochondrial impairment, and p53-dependent pathway was involved in the aryl-PFRs-induced DNA damage and cell cycle arrest. In conclusion, this study improves the understanding of PFRs-induced adverse outcomes and the involved molecular mechanism.


Assuntos
Dano ao DNA , Retardadores de Chama/toxicidade , Mitocôndrias/efeitos dos fármacos , Organofosfatos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Organofosfatos/química
11.
Sci Total Environ ; 668: 806-814, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30870749

RESUMO

Alkylated organophosphate esters (alkyl-OPEs) are widely used and extensively detected in aquatic organisms. This work investigated the tissue-specific toxicokinetics of two common alkyl-OPEs, tri(2­butoxyethyl) phosphate (TBOEP) and tri­n­butyl phosphate (TNBP) in Chinese rare minnow (Gobiocypris rarus) through a 50 day uptake and depuration experiment. The tissue-specific bioconcentration factor (BCF) values for the two alkyl-OPEs ranged from 1 to 30 L/kg wet weight (ww), with the kidney and ovary as the tissues with the highest accumulation. The tissue BCFs only exhibited a significant correlation with lipid contents only in storage tissues (i.e., muscle, brain, ovary and testis), indicating that lipids might not be the major contributor to tissue distribution of TBOEP and TNBP. However, the contribution of blood perfusion and active transport to tissue-specific OPE accumulation needs to be further investigated. Lower accumulation of metabolites than parent chemicals was observed, with metabolite parent concentration factors (MPCFs) <1. Di-alkyl phosphate (DAP), bis(2­butoxyethyl) phosphate (BBOEP) and di(n-butyl) phosphate (DNBP) were the most abundantly formed metabolites of TBOEP and TNBP in various tissues, followed by the monohydroxylated OPEs (OH-OPEs). However, bis(2­butoxyethyl) hydroxyethyl phosphate (BBOEHEP), was detected at much lower levels in the tissues. All the investigated metabolites showed high production rates (kprod,metabolites) in the fish liver, followed by the GI tract and the kidney, indicating the importance of the hepatobiliary and urinary systems in eliminating the metabolites. Our study suggested that metabolism plays an important role in eliminating these two alkyl-OPEs in rare minnow and results in different tissue distribution mechanisms for metabolites and their compounds.


Assuntos
Cyprinidae/fisiologia , Organofosfatos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental , Retardadores de Chama , Hidrocarbonetos Aromáticos , Organofosfatos/metabolismo , Plastificantes , Distribuição Tecidual , Toxicocinética , Poluentes Químicos da Água/metabolismo
12.
Ecotoxicol Environ Saf ; 175: 208-214, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30901638

RESUMO

The widely used surfactant nonylphenol ethoxylate (NPEO) and its raw material 4-n-nonylphenol (4-n-NP), as well as its degradation products, are recognized as endocrine disrupting chemicals. The USA Environmental Protection Agency (EPA) released an assessment that looked for safe alternatives to NPEO. Vanillin ethoxylate (VAEO) is a novel substitute for NPEO and is quite similar to NPEO in structure; there is a risk that it has similar endocrine disrupting effects to NPEO. However, their effects on various nuclear hormone receptors have not been thoroughly examined. In this study, the effects of NPEO, VAEO, 4-n-NP and Vanillin on the estrogen receptor α (ERα), androgen receptor (AR), thyroid hormone receptor (TR), retinoic X receptor ß (RXRß) and estrogen-related receptor γ (ERRγ) were determined and compared using a battery of recombined yeast strains expressing ß-galactosidase. The results showed that NPEO and 4-n-NP acted as significant antagonists of ER, AR, TR and ERRγ. In addition, 4-n-NP also had antagonistic activity toward RXRß. Moreover, VAEO was shown to be a very weak antagonist of TR and ERRγ, and Vanillin had no interaction with any nuclear receptors. For the first time, it was found that NPEO had AR, TR and ERRγ antagonistic effects and that 4-n-NP was an antagonist of RXRß. The in vitro data indicated that NPEO, 4-n-NP and VAEO have the potential to act as endocrine disruptors involving more than one nuclear hormone receptor, but VAEO has much lower endocrine disrupting potential than NPEO. Thus, it is critical to find safe substitutes for NPEO and a substitute of NPEO with structural analogues should be carried out with caution. Furthermore, to look for preferable alternatives for NPEO, more in vivo and in vitro studies of the alternatives concerning endocrine disruption are needed, especially in vitro studies need to involve various target points, not only focus on their effects on ER but also take other nuclear hormone receptor pathways into consideration.


Assuntos
Benzaldeídos/toxicidade , Disruptores Endócrinos/toxicidade , Etilenoglicóis/toxicidade , Fenóis/toxicidade , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Benzaldeídos/química , Relação Dose-Resposta a Droga , Disruptores Endócrinos/química , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Etilenoglicóis/química , Estrutura Molecular , Fenóis/química , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores dos Hormônios Tireóideos/antagonistas & inibidores , Receptores dos Hormônios Tireóideos/genética , Receptor X Retinoide beta/antagonistas & inibidores , Receptor X Retinoide beta/genética , Técnicas do Sistema de Duplo-Híbrido
13.
Ecotoxicol Environ Saf ; 160: 1-9, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29783106

RESUMO

The environmental risks of environmental estrogens (EEs) are often assessed via the same mode of action in the concentration addition (CA) model, neglecting the complex combined mechanisms at the genetic level. In this study, the cell proliferation effects of estrone, 17α-ethinylestradiol, 17ß-estradiol, estriol, diethylstilbestrol, estradiol valerate, bisphenol A, 4-tert-octylphenol and 4-nonylphenol were determined individually using the CCK-8 method, and the proliferation effects of a multicomponent mixture of estrogenic chemicals mixed at equipotent concentrations using a fixed-ratio design were studied using estrogen-sensitive MCF-7 cells. Furthermore, transcription factors related to cell proliferation were analyzed using RT-PCR assays to explore the potential molecular mechanisms related to the estrogenic proliferative effects. The results showed that the estrogenic chemicals act together in an additive mode, and the combined proliferative effects could be predicted more accurately by the response addition model than the CA model with regard to their adverse outcomes. Furthermore, different signaling pathways were involved depending on the different mixtures. The RT-PCR analyses showed that different estrogens have distinct avidities and preferences for different estrogen receptors at the gene level. Furthermore, the results indicated that estrogenic mixtures increased ERα, PIK3CA, GPER, and PTEN levels and reduced Akt1 level to display combined estrogenicity. These findings indicated that the potential combined environmental risks were greater than those found in some specific assessment procedures based on a similar mode of action due to the diversity of environmental pollutions and their multiple unknown modes of action. Thus, more efforts are needed for mode-of-action-driven analyses at the molecular level. Furthermore, to more accurately predict and assess the individual responses in vivo from the cellular effects in vitro, more parameters and correction factors should be taken into consideration in the addition model.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Estrogênios/farmacologia , Compostos Benzidrílicos/farmacologia , Bioensaio , Proliferação de Células/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Dietilestilbestrol/farmacologia , Congêneres do Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , PTEN Fosfo-Hidrolase/metabolismo , Fenóis/farmacologia , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
14.
Environ Pollut ; 230: 775-786, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28732339

RESUMO

Phosphorus-containing flame retardants (PFRs) are increasingly in demand worldwide as replacements for brominated flame retardants (BFRs), but insufficient available toxicological information on PFRs makes assessing their health risks challenging. Mitochondria are important targets of various environmental pollutants, and mitochondrial dysfunction may lead to many common diseases. In the present study, mitochondria impairment-related endpoints were measured by a high content screening (HCS) assay for 11 selected non-halogen PFRs in Chinese hamster ovary (CHO-k1) cells. A cluster analysis was used to categorize these PFRs into three groups according to their structural characteristics and results from the HCS assay. Two groups, containing long-chain alkyl-PFRs and all aryl-PFRs, were found to cause mitochondrial impairment but showed different mechanisms of toxicity. Due to the high correlation between cell death and mitochondrial impairment, two PFRs with different structures, trihexyl phosphate (THP) and cresyl diphenyl phosphate (CDP), were selected and compared with chlorpyrifos (CPF) to elucidate their mechanism of inducing cell death. THP (an alkyl-PFR) was found to utilize a similar pathway as CPF to induce apoptosis. However, cell death induced by CDP (an aryl-PFR) was different from classical necrosis based on experiments to discriminate among the different modes of cell death. These results confirm that mitochondria might be important targets for some PFRs and that differently structured PFRs could function via distinct mechanisms of toxicity.


Assuntos
Poluentes Ambientais/toxicidade , Retardadores de Chama/toxicidade , Mitocôndrias/efeitos dos fármacos , Organofosfatos/toxicidade , Animais , Células CHO , Contagem de Células , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Poluentes Ambientais/análise , Poluentes Ambientais/química , Retardadores de Chama/análise , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Organofosfatos/análise , Organofosfatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA