RESUMO
Inspired by biomineralization, the first synthesis of size-tunable calcium carbonates from nanoparticles (YC-CaCO3 NPs) to nano/microspheres (YC-CaCO3 N/MSs) with a porous structure was accomplished using a facile method under the mediation of the secretion from yeast cells (YCs). The biomolecules derived from the secretion of YCs were used as conditioning and stabilizing agents to control the biosynthesis of the YC-CaCO3 materials. The morphology and crystal forms of YC-CaCO3 materials can be affected by the biomolecules from the secretion of YCs. With increasing concentrations of biomolecules, the morphologies of the obtained CaCO3 materials changed from nanoparticles to nano/microspheres with a porous structure, while the crystal forms transformed from amorphous to calcite. Functional investigations showed that YC-CaCO3 NSs with a porous structure effectively acted as anticancer drug carriers with accurate and selective drug release in tumor tissue, which suggests that they have great potential to function as a therapeutic delivery system. These application features are mainly attributed to the satisfactory biocompatibility and biodegradability, high drug-loading capacity, and pH-dependent sustained drug release performance of the porous YC-CaCO3 NSs. The biomimetic synthesis strategy of YC-CaCO3 materials mediated by YC secretion not only helps to shed light on the biomineralization mechanism in organisms, but may also lead to a new means of biosynthesizing organic-inorganic nanocomposites.
RESUMO
Highly ordered hierarchical calcium carbonate is an important phase and has technological interest in the development of functional materials. The work describes hierarchical CaCO(3)-maltose meso/macroporous hybrid materials were synthesized using a simple gas-diffusion method. The uniform hexagonal-shaped CaCO(3)-maltose hybrid materials are formed by the hierarchical assembly of nanoparticles. The pore structure analysis indicates that the sample possesses the macroporous structure of mesoporous framework. The distinguishing features of the hierarchical CaCO(3)-maltose materials in water treatment involve not only high removal capacities, but also decontamination of trace metal ions. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The maximum removal capacity of the CaCO(3)-maltose hybrid materials for Pb(2+), Cd(2+), Cu(2+), Co(2+), Mn(2+) and Ni(2+) ions was 3242.48, 487.80, 628.93, 393.70, 558.66 and 769.23 mg/g, respectively. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. The results indicate that pseudo-second-order kinetic equation and intra-particle diffusion model can better describe the adsorption kinetics. The adsorption and precipitation transformation mechanism can be considered due to hierarchical meso/macroporous structure, rich organic ligands of the CaCO(3)-maltose hybrid materials and the larger solubility product of CaCO(3).