Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Ther Nucleic Acids ; 35(2): 102195, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38741614

RESUMO

G protein-coupled receptors (GPCRs) are the major targets of existing drugs for a plethora of human diseases and dominate the pharmaceutical market. However, over 50% of the GPCRs remain undruggable. To pursue a breakthrough and overcome this situation, there is significant clinical research for developing RNA-based drugs specifically targeting GPCRs, but none has been approved so far. RNA therapeutics represent a unique and promising approach to selectively targeting previously undruggable targets, including undruggable GPCRs. However, the development of RNA therapeutics faces significant challenges in areas of RNA stability and efficient in vivo delivery. This review presents an overview of the advances in RNA therapeutics and the diverse types of nanoparticle RNA delivery systems. It also describes the potential applications of GPCR-targeted RNA drugs for various human diseases.

2.
Adv Sci (Weinh) ; 9(26): e2200562, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35712764

RESUMO

G protein-coupled receptors (GPCRs) are the most common and important drug targets. However, >70% of GPCRs are undruggable or difficult to target using conventional chemical agonists/antagonists. Small nucleic acid molecules, which can sequence-specifically modulate any gene, offer a unique opportunity to effectively expand drug targets, especially those that are undruggable or difficult to address, such as GPCRs. Here, the authors report  for the first time that small activating RNAs (saRNAs) effectively modulate a GPCR for cancer treatment. Specifically, saRNAs promoting the expression of Mas receptor (MAS1), a GPCR that counteracts the classical angiotensin II pathway in cancer cell proliferation and migration, are identified. These saRNAs, delivered by an amphiphilic dendrimer vector, enhance MAS1 expression, counteracting the angiotensin II/angiotensin II Receptor Type 1 axis, and leading to significant suppression of tumorigenesis and the inhibition of tumor progression of multiple cancers in tumor-xenografted mouse models and patient-derived tumor models. This study provides not only a new strategy for cancer therapy by targeting the renin-angiotensin system, but also a new avenue to modulate GPCR signaling by RNA activation.


Assuntos
Angiotensina II , Neoplasias , Angiotensina II/metabolismo , Animais , Camundongos , Neoplasias/genética , Neoplasias/terapia , RNA/metabolismo , Receptores Acoplados a Proteínas G/genética , Sistema Renina-Angiotensina
3.
Toxicol Lett ; 354: 33-43, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757175

RESUMO

Epidemiological studies show strong associations between fine particulate matter (PM2.5) air pollution and adverse pulmonary effects. In the present study, wintertime PM2.5 samples were collected from three geographically similar regions-Sacramento, California, USA; Jinan, Shandong, China; and Taiyuan, Shanxi, China-and extracted to form PMCA, PMSD, and PMSX, respectively, for comparison in a BALB/c mouse model. Each of four groups was oropharyngeally administered Milli-Q water vehicle control (50 µL) or one type of PM extract (20 µg/50 µL) five times over two weeks. Mice were necropsied on post-exposure days 1, 2, and 4 and examined using bronchoalveolar lavage (BAL), histopathology, and assessments of cytokine/chemokine mRNA and protein expression. Chemical analysis demonstrated all three extracts contained black carbon, but PMSX contained more sulfates and polycyclic aromatic hydrocarbons (PAHs) associated with significantly greater neutrophil numbers and greater alveolar/bronchiolar inflammation on post-exposure days 1 and 4. On day 4, PMSX-exposed mice also exhibited significant increases in interleukin-1 beta, tumor necrosis factor-alpha, and chemokine C-X-C motif ligands-3 and -5 mRNA, and monocyte chemoattractant protein-1 protein. These combined findings suggest greater sulfate and PAH content contributed to a more intense and progressive inflammatory response with repeated PMSX compared to PMCA or PMSD exposure.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Geografia , Exposição por Inalação/efeitos adversos , Pneumopatias/induzido quimicamente , Pneumopatias/fisiopatologia , Material Particulado/efeitos adversos , Estações do Ano , Animais , California , China , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
4.
Environ Sci Pollut Res Int ; 28(20): 25819-25829, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33474668

RESUMO

Although positive associations exist between ambient particulate matter (PM2.5; diameter ≤ 2.5 µm) and the morbidity and mortality rates for respiratory diseases, the biological mechanisms of the reported health effects are unclear. Considering that alveolar macrophages (AM) are the main cells responsible for phagocytic clearance of xenobiotic particles that reach the airspaces of the lungs, the purpose of this study was to investigate whether PM2.5 induced AM apoptosis, and investigate its possible mechanisms. Freshly isolated AM from Wistar rats were treated with extracted PM2.5 at concentrations of 33, 100, or 300 µg/mL for 4 h; thereafter, the cytotoxic effects were evaluated. The results demonstrated that PM2.5 induced cytotoxicity by decreasing cell viability and increasing lactate dehydrogenase (LDH) levels in AMs. The levels of reactive oxygen species (ROS) and intracellular calcium cations (Ca2+) markedly increased in higher PM2.5 concentration groups. Additionally, the apoptotic ratio increased, and the apoptosis-related proteins BCL2-associated X (Bax), caspase-3, and caspase-9 were upregulated, whereas B cell lymphoma-2 (Bcl-2) protein levels were downregulated following PM2.5 exposure. Cumulative findings showed that PM2.5 induced apoptosis in AMs through a mitochondrial-mediated pathway, which indicated that PM2.5 plays a significant role in lung injury diseases.


Assuntos
Macrófagos Alveolares , Material Particulado , Animais , Apoptose , Macrófagos Alveolares/metabolismo , Mitocôndrias , Material Particulado/metabolismo , Material Particulado/toxicidade , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
5.
Toxicol Lett ; 328: 52-60, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320776

RESUMO

Ambient PM2.5 was collected during the winter season from Taiyuan, Shanxi, China; Jinan, Shandong, China; and Sacramento, California, USA, and used to create PMSX, PMSD, and PMCA extracts, respectively. Time-lag experiments were performed to explore the in vivo and in vitro toxicity of the PM extracts. In vivo inflammatory lung responses were assessed in BALB/c mice using a single oropharyngeal aspiration (OPA) of PM extract or vehicle (CTRL) on Day 0. Necropsies were performed on Days 1, 2, and 4 post-OPA, and pulmonary effects were determined using bronchoalveolar lavage (BAL) and histopathology. On Day 1, BAL neutrophils were significantly elevated in all PM- versus CTRL-exposed mice, with PMCA producing the strongest response. However, histopathological scoring showed greater alveolar and perivascular effects in PMSX-exposed mice compared to all three other groups. By Day 4, BAL neutrophilia and tissue inflammation were resolved, similar across all groups. In vitro effects were examined in human HepG2 hepatocytes, and U937 cells following 6, 24, or 48 h of exposure to PM extract or DMSO (control). Luciferase reporter and quantitative polymerase chain reaction assays were used to determine in vitro effects on aryl hydrocarbon receptor (AhR) activation and gene transcription, respectively. Though all three PM extracts activated AhR, PMSX produced the greatest increases in AhR activation, and mRNA levels of cyclooxygenase-2, cytochrome P450, interleukin (IL)-8, and interleukin (IL)-1ß. These effects were assumed to result from a greater abundance of polycyclic aromatic hydrocarbons (PAHs) in PMSX compared to PMSD and PMCA.


Assuntos
Poluentes Atmosféricos/toxicidade , Monitoramento Ambiental/métodos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Material Particulado/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , California , China , Citocinas/metabolismo , Células Hep G2 , Humanos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Receptores de Hidrocarboneto Arílico/genética , Transcrição Gênica/efeitos dos fármacos , Células U937
6.
Toxicol Pathol ; 47(8): 954-961, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31645209

RESUMO

The effects of particulate matter (PM) on cardiopulmonary health have been studied extensively over the past three decades. Particulate matter is the primary criteria air pollutant most commonly associated with adverse health effects on the cardiovascular and respiratory systems. The mechanisms by which PM exerts its effects are thought to be due to a variety of factors which may include, but are not limited to, concentration, duration of exposure, and age of exposed persons. Adverse effects of PM are strongly driven by their physicochemical properties, sites of deposition, and interactions with cells of the respiratory and cardiovascular systems. The direct translocation of particles, as well as neural and local inflammatory events, are primary drivers for the observed cardiopulmonary health effects. In this review, toxicological studies in animals, and clinical and epidemiological studies in humans are examined to demonstrate the importance of using all three approaches to better define potential mechanisms driving health outcomes upon exposure to airborne PM of diverse physicochemical compositions.


Assuntos
Poluentes Atmosféricos/toxicidade , Doenças Cardiovasculares/epidemiologia , Exposição por Inalação , Pneumopatias/epidemiologia , Material Particulado/toxicidade , Poluentes Atmosféricos/química , Animais , Doenças Cardiovasculares/induzido quimicamente , Frequência Cardíaca/efeitos dos fármacos , Humanos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Pneumopatias/induzido quimicamente , Pneumopatias/patologia , Material Particulado/química , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA