Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Pathogens ; 12(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38003764

RESUMO

Catabolite control protein A (CcpA), an important global regulatory protein, is extensively found in S. aureus. Many studies have reported that CcpA plays a pivotal role in regulating the tricarboxylic acid cycle and pathogenicity. Moreover, the CcpA-knockout Staphylococcus aureus (S. aureus) in diabetic mice, compared with the wild-type, showed a reduced colonization rate in the tissues and organs and decreased inflammatory factor expression. However, the effect of CcpA-knockout S. aureus on the host's energy metabolism in a high-glucose environment and its mechanism of action remain unclear. S. aureus, a common and major human pathogen, is increasingly found in patients with obesity and diabetes, as recent clinical data reveal. To address this issue, we generated CcpA-knockout S. aureus strains with different genetic backgrounds to conduct in-depth investigations. In vitro experiments with high-glucose-treated cells and an in vivo model study with type 1 diabetic mice were used to evaluate the unknown effect of CcpA-knockout strains on both the glucose and lipid metabolism phenotypes of the host. We found that the strains caused an abnormal metabolic phenotype in type 1 diabetic mice, particularly in reducing random and fasting blood glucose and increasing triglyceride and fatty acid contents in the serum. In a high-glucose environment, CcpA-knockout S. aureus may activate the hepatic STAT5/PDK4 pathway and affect pyruvate utilization. An abnormal metabolic phenotype was thus observed in diabetic mice. Our findings provide a better understanding of the molecular mechanism of glucose and lipid metabolism disorders in diabetic patients infected with S. aureus.

2.
RSC Adv ; 13(41): 28743-28752, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37807974

RESUMO

Staphylococcus aureus (S. aureus) is one of the important human pathogens and causes both superficial and systemic infections. More importantly, the formation of S. aureus biofilms, a main cause of its pathogenicity and drug resistance, has been a critical challenge in clinical treatment. Carvacrol, a plant-based natural product, has gained great interest for therapeutic purposes due to its effective biological activity with low cytotoxicity. The present study aimed to investigate the effect of carvacrol on anti-biofilm activity. Growth curve analysis showed that applying a sub-inhibitory concentration of carvacrol (4 µg mL-1) was not lethal to S. aureus SYN; however, the inhibition rate of biofilm formation was as high as 63.6%, and the clearance rate of mature biofilms was as high as 30.7%. In addition, carvacrol effectively reduced the production of biofilm-associated extracellular polysaccharides and showed no effect on eDNA release. Furthermore, qPCR analysis revealed that carvacrol significantly down-regulated the expression of icaA, icaB, icaC, agrA, and sarA (P < 0.05). The in vivo efficacy of carvacrol against biofilm infection was further verified with a biological model of G. mellonella larvae. The results showed that carvacrol was non-toxic to the larvae and can effectively increase the survival rate of the larvae infected with S. aureus strain SYN.

3.
Infect Drug Resist ; 16: 3639-3647, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313263

RESUMO

Background: Staphylococcus haemolyticus is an opportunistic pathogen that belongs to coagulase-negative Staphylococci (CoNS). Increasing infection and multi-drug resistance cases caused by this strain have been reported and thus it poses a great health threat. Methods: The third-generation sequencing technology was performed on a S. haemolyticus SH-1 isolated from a clinical sample to analyze the drug resistance genes, which included vancomycin resistance related genes. In addition, antimicrobial susceptibility tests, transmission electron microscopy and Triton X-100 stimulated autolysis were conducted to understand its biological characteristics. Results: The study shows that this clinical isolate is a vancomycin intermediate-resistant strain. Genome comparison also revealed that WalK(N70K) and WalK(R280Q) mutations may contribute to the vancomycin resistant phenotype. Besides, S. haemolyticus SH-1 exhibit common features of thicker cell wall and decreased autolytic activity. Conclusion: S. haemolyticus SH-1 with WalKR mutations shows typical characteristics of vancomycin resistant strains. Combining the genome features and biological properties, our findings may provide important information for the understanding of the molecular mechanism of S. haemolyticus to vancomycin intermediate-resistance.

4.
Microbiol Spectr ; 10(5): e0032222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35980298

RESUMO

The rapid and accurate diagnostic methods to identify carbapenemase-producing organisms (CPO) is of great importance for controlling the CPO infection. Herein, we have developed a microfluidic chip-based technique to detect CPO and assessed its clinical value in detecting CPO directly from blood cultures (BCs). The detection performance of the microfluidic chip-based LAMP amplification method was analyzed retrospectively on a collection of 192 isolates including molecularly characterized 108 CPO and 84 non-CPO and prospectively on a collection of 133 positive BCs with or without CPO suspicion, respectively. In the retrospective study, the microfluidic chip-based LAMP amplification method exhibited 87.5% accuracy (95% CI [82.0-91.5]), 97.7% sensitivity (95% CI [91.2-99.6]), 78.8% specificity (95% CI [69.5-86.0]), 79.6% positive predictive value (PPV) (95% CI [70.6-86.5]) and 97.6% negative predictive value (NPV) (95% CI [90.9-99.6]). Among the 192 isolates, 22 (11.5%) false-positives (FP) and 2 (1.0%) false negatives (FN) were observed. In the prospective study, the 133 routine isolates of positive BCs including 18 meropenem-resistant CPO and 115 non-CPO were assessed, and 4 FP were observed in non-CPO and CPO, respectively. The current method showed a total detection performance of 94.0% accuracy (95% CI [88.4-97.1]), 100.0% sensitivity (95% CI [73.2-100.0]), 93.2% specificity (95% CI [86.7-96.8]), 63.6% PPV (95% CI [40.8-82.0]) and 100.0% NPV (95% CI [95.8-100.0]). In summary, the microfluidic chip-based LAMP amplification method is reliable for the rapid screening and detection of CPO with high accuracy, sensitivity, and specificity, and could easily be implemented in clinical microbiology laboratories. IMPORTANCE Rapid and accurate identification of CPO may reduce the genetic exchanges among bacteria and prevent further dissemination of carbapenemases to non-CPO. The current method had designed microfluidic chip-based LAMP amplification method for multiplex detection of carbapenemase genes and evaluated the detection performance of the newly method. The current method can rapidly screen and detect CPO with high accuracy, sensitivity, and specificity, and could easily be implemented in clinical microbiology laboratories, as this will reduce the carbapenem resistance issues worldwide.


Assuntos
Microfluídica , beta-Lactamases , Estudos Retrospectivos , Microfluídica/métodos , Meropeném , Estudos Prospectivos , beta-Lactamases/genética , Proteínas de Bactérias/genética , Bactérias/genética
5.
Diabetes ; 71(4): 795-811, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35043173

RESUMO

Methazolamide (MTZ), a carbonic anhydrase inhibitor, has been shown to inhibit cardiomyocyte hypertrophy and exert a hypoglycemic effect in patients with type 2 diabetes and diabetic db/db mice. However, whether MTZ has a cardioprotective effect in the setting of diabetic cardiomyopathy is not clear. We investigated the effects of MTZ in a mouse model of streptozotocin-induced type 1 diabetes mellitus (T1DM). Diabetic mice received MTZ by intragastric gavage (10, 25, or 50 mg/kg, daily for 16 weeks). In the diabetic group, MTZ significantly reduced both random and fasting blood glucose levels and improved glucose tolerance in a dose-dependent manner. MTZ ameliorated T1DM-induced changes in cardiac morphology and dysfunction. Mechanistic analysis revealed that MTZ blunted T1DM-induced enhanced expression of ß-catenin. Similar results were observed in neonatal rat cardiomyocytes (NRCMs) and adult mouse cardiomyocytes treated with high glucose or Wnt3a (a ß-catenin activator). There was no significant change in ß-catenin mRNA levels in cardiac tissues or NRCMs. MTZ-mediated ß-catenin downregulation was recovered by MG132, a proteasome inhibitor. Immunoprecipitation and immunofluorescence analyses showed augmentation of AXIN1-ß-catenin interaction by MTZ in T1DM hearts and in NRCMs treated with Wnt3a; thus, MTZ may potentiate AXIN1-ß-catenin linkage to increase ß-catenin degradation. Overall, MTZ may alleviate cardiac hypertrophy by mediating AXIN1-ß-catenin interaction to promote degradation and inhibition of ß-catenin activity. These findings may help inform novel therapeutic strategy to prevent heart failure in patients with diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Animais , Proteína Axina/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/prevenção & controle , Glucose/metabolismo , Humanos , Metazolamida/metabolismo , Metazolamida/farmacologia , Metazolamida/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Ratos , beta Catenina/metabolismo
6.
Antibiotics (Basel) ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36671212

RESUMO

Bacteria can form biofilms in natural and clinical environments on both biotic and abiotic surfaces. The bacterial aggregates embedded in biofilms are formed by their own produced extracellular matrix. Staphylococcus aureus (S. aureus) is one of the most common pathogens of biofilm infections. The formation of biofilm can protect bacteria from being attacked by the host immune system and antibiotics and thus bacteria can be persistent against external challenges. Therefore, clinical treatments for biofilm infections are currently encountering difficulty. To address this critical challenge, a new and effective treatment method needs to be developed. A comprehensive understanding of bacterial biofilm formation and regulation mechanisms may provide meaningful insights against antibiotic resistance due to bacterial biofilms. In this review, we discuss an overview of S. aureus biofilms including the formation process, structural and functional properties of biofilm matrix, and the mechanism regulating biofilm formation.

7.
J Pharm Pharmacol ; 73(12): 1715-1725, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34343333

RESUMO

OBJECTIVES: Investigate if azilsartan protects against myocardial hypertrophy by upregulating nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated pathways. METHODS: Abdominal aortic constriction (AAC)-induced cardiac hypertrophy in rats was applied. Azilsartan or vehicle was administered daily for 6 weeks in sham or AAC rats. Cardiac morphology and ventricular function were determined. Azilsartan effects upon neonatal rat cardiomyocyte (NRCM) hypertrophy and molecular mechanisms were studied in angiotensin (Ang) II-stimulated NRCMs in vitro. Nrf2-small interfering RNA (siRNA) was used to knockdown Nrf2 expression. Messenger RNA (mRNA)/protein expression of Kelch-like erythroid cell-derived protein (Keap)1 and Nrf2 and its downstream antioxidant enzymes was determined by real-time reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. KEY FINDINGS: Azilsartan treatment ameliorated cardiac hypertrophy/fibrosis significantly in AAC rats. Azilsartan increased expression of Nrf2 protein but decreased expression of Keap1 protein. Upregulation of protein expression of Nrf2's downstream antioxidant enzymes by azilsartan treatment was observed. Azilsartan inhibited Ang II-induced NRCM hypertrophy significantly and similar effects on the Keap1-Nrf2 pathway were observed in vivo. Nrf2 knockdown markedly counteracted the beneficial effects of azilsartan on NRCM hypertrophy and the Keap1-Nrf2 pathway. CONCLUSIONS: Azilsartan restrained pressure overload-induced cardiac remodelling by activating the Keap1-Nrf2 pathway and increasing expression of downstream antioxidant enzymes to alleviate oxidative stress.


Assuntos
Antagonistas de Receptores de Angiotensina/farmacologia , Benzimidazóis/farmacologia , Cardiomegalia/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Miocárdio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oxidiazóis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Angiotensina II/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cardiomegalia/tratamento farmacológico , Feminino , Ventrículos do Coração/efeitos dos fármacos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Regulação para Cima
8.
Acta Pharmacol Sin ; 42(1): 55-67, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32504066

RESUMO

Estrogen deficiency induces cardiac dysfunction and increases the risk of cardiovascular disease in postmenopausal women and in those who underwent bilateral oophorectomy. Previous evidence suggests that puerarin, a phytoestrogen, exerts beneficial effects on cardiac function in patients with cardiac hypertrophy. In this study, we investigated whether puerarin could prevent cardiac hypertrophy and remodeling in ovariectomized, aortic-banded rats. Female SD rats subjected to bilateral ovariectomy (OVX) plus abdominal aortic constriction (AAC). The rats were treated with puerarin (50 mg·kg-1 ·d-1, ip) for 8 weeks. Then echocardiography was assessed, and the rats were sacrificed, their heart tissues were extracted and allocated for further experiments. We showed that puerarin administration significantly attenuated cardiac hypertrophy and remodeling in AAC-treated OVX rats, which could be attributed to activation of PPARα/PPARγ coactivator-1 (PGC-1) pathway. Puerarin administration significantly increased the expression of estrogen-related receptor α, nuclear respiratory factor 1, and mitochondrial transcription factor A in hearts. Moreover, puerarin administration regulated the expression of metabolic genes in AAC-treated OVX rats. Hypertrophic changes could be induced in neonatal rat cardiomyocytes (NRCM) in vitro by treatment with angiotensin II (Ang II, 1 µM), which was attenuated by co-treatemnt with puerarin (100 µM). We further showed that puerarin decreased Ang II-induced accumulation of non-esterified fatty acids (NEFAs) and deletion of ATP, attenuated the Ang II-induced dissipation of the mitochondrial membrane potential, and improved the mitochondrial dysfunction in NRCM. Furthermore, addition of PPARα antagonist GW6471 (10 µM) partially abolished the anti-hypertrophic effects and metabolic effects of puerarin in NRCM. In conclusion, puerarin prevents cardiac hypertrophy in AAC-treated OVX rats through activation of PPARα/PGC-1 pathway and regulation of energy metabolism remodeling. This may provide a new approach to prevent the development of heart failure in postmenopausal women.


Assuntos
Cardiomegalia/prevenção & controle , Cardiotônicos/uso terapêutico , Isoflavonas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Angiotensina II/farmacologia , Animais , Aorta Abdominal/patologia , Cardiomegalia/etiologia , Cardiomegalia/patologia , Constrição Patológica/complicações , Metabolismo Energético/efeitos dos fármacos , Feminino , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Ovariectomia , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos Sprague-Dawley
9.
Front Microbiol ; 11: 1479, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765439

RESUMO

Bacterial biofilms do serious harm to the diabetic foot ulcer (DFU) because they play a crucial role in infection invasion and spread. Staphylococcus aureus, the predominant Gram-positive bacteria in diabetic foot infection (DFI), is often associated with colonization and biofilm formation. Through biofilm formation tests in vitro, we observed that S. aureus bacteria isolated from DFU wounds were more prone to form biofilms than those from non-diabetic patients, while there was no difference in blood sugar between the biofilm (+) diabetics (DB+) and biofilm (-) diabetics (DB-). Furthermore, we found that advanced glycation end products (AGEs) promoted the biofilm formation of S. aureus in clinical isolates and laboratory strains in vitro, including a methicillin-resistant strain. Analysis of biofilm components demonstrated that the biofilms formed mainly by increasing extracellular DNA (eDNA) release; remarkably, the S. aureus global regulator sigB was upregulated, and its downstream factor lrgA was downregulated after AGE treatments. Mechanism studies using a sigB-deleted mutant (Newman-ΔsigB) confirmed that AGEs decreased expression of lrgA via induction of sigB, which is responsible for eDNA release and is a required component for S. aureus biofilm development. In conclusion, the present study suggests that AGEs promote S. aureus biofilm formation via an eDNA-dependent pathway by regulating sigB. The data generated by this study will provide experimental proof and theoretical support to improve DFU infection healing.

10.
Int J Biol Sci ; 16(13): 2454-2463, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760212

RESUMO

The Hippo pathway undertakes a pivotal role in organ size control and the process of physiology and pathology in tissue. Its downstream effectors YAP1 and TAZ receive upstream stimuli and exert transcription activity to produce biological output. Studies have demonstrated that the Hippo pathway contributes to maintenance of cardiac homeostasis and occurrence of cardiac disease. And these cardiac biological events are affected by crosstalk among Hippo-YAP1/TAZ, Wnt/ß-catenin, Bone morphogenetic protein (BMP) and G-protein-coupled receptor (GPCR) signaling, which provides new insights into the Hippo pathway in heart. This review delineates the interaction among Hippo, Wnt, BMP and GPCR pathways and discusses the effects of these pathways in cardiac biology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miocárdio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
11.
J Med Chem ; 63(11): 5797-5815, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32400157

RESUMO

Because of the rapid increase in bacterial resistance, there is an urgent need for developing new antimicrobial agents to combat multidrug-resistant pathogens. In this study, we designed and synthesized a series of kaempferol derivatives as antimicrobial agents biomimicking the structural properties and biological functions of host defense peptides. After fine-tuning of hydrophobic and cationic hydrophilic moieties linked to the flavone scaffold of kaempferol, we obtained a lead compound (52) that displayed high membrane selectivity (>128), poor hemolytic activity, low cytotoxicity to mammalian cells, and excellent activity against Gram-positive bacteria (minimum inhibitory concentrations = 1.56 µg/mL), including methicillin-resistant Staphylococcus aureus. Compound 52 can kill bacteria quickly by destroying the bacterial membranes and avoid developing bacterial resistance. Moreover, compound 52 exhibited potent in vivo antibacterial activity against S. aureus in a murine corneal infection model. These results indicated that compound 52 had the therapeutic potential as a novel membrane-active antimicrobial to combat Gram-positive bacterial infections.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Quempferóis/química , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doenças da Córnea/tratamento farmacológico , Doenças da Córnea/microbiologia , Modelos Animais de Doenças , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Bactérias Gram-Positivas/isolamento & purificação , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Hemólise/efeitos dos fármacos , Humanos , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
12.
BMC Complement Med Ther ; 20(1): 142, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393384

RESUMO

BACKGROUND: Carvacrol is a food additive with various bioactivities, including reducing the blood glucose level as well as improvement of heart function, in diabetic mice. We explored the antihyperglycemic effect of carvacrol and its effect on the key hepatic enzymes accounting for glucose metabolism. METHODS: A streptozotocin (STZ)-induced diabetes-mellitus model in mice was used. Mice were divided randomly into a control group, diabetic group, low dose carvacrol-treated diabetic group (10 mg/kg body weight [BW]), and high dose carvacrol-treated diabetic group (20 mg/kg BW). Carvacrol was injected intraperitoneally (i.p.) in each carvacrol-treated group daily for 4 weeks and 6 weeks, respectively. The level of random plasma glucose, fasting plasma glucose, and plasma insulin was determined at 4 weeks and 6 weeks after carvacrol administration. The plasma level of total cholesterol (TC), triglycerides (TG), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and the activity of hepatic key enzymes related to glucose metabolism were determined. RESULTS: Carvacrol treatment decreased the levels of random plasma glucose and fasting plasma glucose, significantly in a dose-dependent manner. A significant improvement in glucose tolerance and a significant decrease in the plasma level of TG were observed in carvacrol-treated diabetic mice at a dose of 20 mg/kg BW compared with that in vehicle-treated diabetic mice. There was no significant difference in the plasma level of TC and insulin between vehicle-treated diabetic mice and carvacrol-treated diabetic mice. Carvacrol treatment at a dose of 20 mg/kg BW significantly reduced the plasma level of LDH but not AST, ALT, or ALP, compared with that in the vehicle-treated diabetic group. The activity of hexokinase (HK), 6-phosphofructokinase (PFK), and citrate synthetase (CS) was increased by carvacrol treatment in diabetic mice. CONCLUSIONS: Carvacrol exerted an anti-hyperglycemic effect in STZ-induced diabetic mice. This was achieved through regulating glucose metabolism by increasing the activity of the hepatic enzymes HK, PFK, and CS.


Assuntos
Glicemia/metabolismo , Cimenos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Animais , Biomarcadores/sangue , Relação Dose-Resposta a Droga , Insulina/sangue , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Estreptozocina
13.
Front Pharmacol ; 10: 998, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572181

RESUMO

Background: Diabetic cardiomyopathy (DCM), a common complication of diabetes mellitus, eventually leads to heart failure. Carvacrol is a food additive with diverse bioactivities. We aimed to study the protective effects and mechanisms of carvacrol in DCM. Methods: We used a streptozotocin-induced and db/db mouse model of types 1 and 2 diabetes mellitus (T1DM and T2DM), respectively. Both study groups received daily intraperitoneal injections of carvacrol for 6 weeks. Cardiac remodeling was evaluated by histological analysis. We determined gene expression of cardiac remodeling markers (Nppa and Myh7) by quantitative real-time PCR and cardiac function by echocardiography. Changes of PI3K/AKT signaling were determined with Western blotting. GLUT4 translocation was evaluated by Western blotting and immunofluorescence staining. Results: Compared with control mice, both T1DM and T2DM mice showed cardiac remodeling and left ventricular dysfunction. Carvacrol significantly reduced blood glucose levels and suppressed cardiac remodeling in mice with T1DM and T2DM. At the end of the treatment period, both T1DM and T2DM mice showed lesser cardiac hypertrophy, Nppa and Myh7 mRNA expressions, and cardiac fibrosis, compared to mice administered only the vehicle. Moreover, carvacrol significantly restored PI3K/AKT signaling, which was impaired in mice with T1DM and T2DM. Carvacrol increased levels of phosphorylated PI3K, PDK1, AKT, and AS160 and inhibited PTEN phosphorylation in mice with T1DM and T2DM. Carvacrol treatment promoted GLUT4 membrane translocation in mice with T1DM and T2DM. Metformin was used as the positive drug control in T2DM mice, and carvacrol showed comparable effects to that of metformin on cardiac remodeling and modulation of signaling pathways. Conclusion: Carvacrol protected against DCM in mice with T1DM and T2DM by restoring PI3K/AKT signaling-mediated GLUT4 membrane translocation and is a potential treatment of DCM.

14.
Infect Drug Resist ; 12: 2283-2296, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31413605

RESUMO

BACKGROUND: The prevalence of drug-resistant bacterial infections urges the development of new antibacterial agents that possess a mechanism of action different from traditional antibiotics. FtsZ has been recognized as a key functional protein in bacterial cell division and it is currently believed to be a potential target for the development of novel antibacterial agents. PURPOSE: The primary aim of the study is to screen out an inhibitor targeting at FtsZ and followed to investigate its antibacterial activity and mode of action. METHODS: Cell-based cell division inhibitory screening assay, antimicrobial susceptibility test, minimum bactericidal concentration assay, time-killing curve determination, FtsZ polymerization assay, GTPase activity assay, and molecular modeling were performed in the present study. RESULTS: The screening study from a small library consisting of benzimidazole and indole derivatives discovered a compound (CZ74) with an indole-core structure. The compound exhibited strong cell division inhibitory effect. In addition, CZ74 shows high antibacterial potency against a number of tested Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The minimum inhibitory concentration values obtained were within the range of 2-4 µg/mL. The results of biological study revealed that CZ74 at 2 µg/mL is able to disrupt FtsZ polymerization and inhibit GTPase activity and cell division. From molecular modeling study, CZ74 is found possibly binding into the interdomain cleft of FtsZ protein and then leads to inhibitory effects. CONCLUSION: This indole-cored molecule CZ74 could be a potential lead compound and could be further developed as a new generation of antibacterial agents targeting FtsZ to combat against multidrug-resistant bacteria.

15.
Infect Drug Resist ; 12: 1719-1728, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354320

RESUMO

BACKGROUND: Staphylococcus aureus is among the most common causes of health care- and community-associated infections worldwide. The distributions of different S. aureus clones change over time and also vary geographically. The purpose of this study was to determine the molecular type and antimicrobial resistance profiles of clinical S. aureus strains isolated in Urumqi, Northwestern China. METHODS: A total of 605 clinical S. aureus isolates were collected from Xinjiang Military General Hospital, in Urumqi. Protein A-encoding (spa) typing, multilocus sequence typing, staphylococcal chromosomal cassette mec typing, Panton-Valentine leucocidin (pvl) gene detection, and antimicrobial resistance profiling were performed. RESULTS: Among these strains, 271 isolates (44.7%) were methicillin-resistant S. aureus (MRSA) and 334 (55.3%) were methicillin-susceptible S. aureus (MSSA). The MRSA strains consisted of 22 spa types and 14 sequence types (STs). ST239-MRSA-III-t030 (73.1%, 198/271) and ST59-MRSA-IV-t437 (11.8%, 32/271) were the most common, and ST22-MRSA-IV-t309 was the rarest (2.02%, 6/271). The MSSA strains consisted of 93 spa types and 29 STs. ST22, ST121, ST398, ST5, ST7, ST188, and ST15 were the main MSSA STs, and ST22-MSSA-t309 was most common (26.0%, 87/334). The pvl gene was present in 20.3% of all S.aureus strains, and 80.8% (88/99) of ST22-MSSA strains harbored the pvl gene. A total of 85.7% pvl-positive ST22-MSSA strains were spa t309 (85/99), and 87.5% of pvl-positive ST22-MSSA strains were from abscesses or wounds (skin and soft tissue infections). All ST239-MRSA strains were resistant to gentamicin (GEN), levofloxacin (LEV), ciprofloxacin (CIP), moxifloxacin (MXF), rifampicin (RIF), and tetracycline (TET). Among the ST59-MRSA strains, over 70.0% were resistant to erythromycin (ERY), clindamycin (CLI), and TET. ST22-MSSA remained susceptible to most antibiotics, but was resistant to PEN (97.0%), ERY (57.6%), and CLI (15.2%). CONCLUSION: Our major results indicated that the antimicrobial resistance profiles and pvl genes of S. aureus isolates from Urumqi were closely associated with clonal lineage. ST239-MRSA-III-t030 and pvl-positive ST22-MSSA-t309 were the most common clones in this region of Northwestern China.

16.
Bioorg Med Chem ; 27(7): 1274-1282, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30792100

RESUMO

Filamenting temperature-sensitive mutant Z (FtsZ) is recognized as a promising target for new antibiotics development because of its high conservatism and pivotal role in the bacteria cell division. The aromatic heterocyclic scaffold of indole is known showing merit medical functions in antiviral and antimicrobial. In the present study, a series of 1-methylquinolinium derivatives, which were integrated with an indole fragment at its 2-position and a variety of amino groups (cyclic or linear, mono- or di-amine) at the 4-position were synthesized and their antibacterial activities were evaluated. The results of antibacterial study show that the representative compounds can effectively inhibit the growth of testing strains including MRSA and VRE, with MIC values of 1-4 µg/mL by bactericidal mode. The mode of action assays revealed that c2 can effectively disrupt the rate of GTP hydrolysis and dynamic polymerization of FtsZ, and thus inhibits bacterial cell division and then causes bacterial cell death. In addition, the result of resistance generation experiment reveals that c2 is not likely to induce resistance in S. aureus.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Indóis/farmacologia , Compostos de Quinolínio/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana/efeitos dos fármacos , Indóis/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos de Quinolínio/química , Relação Estrutura-Atividade
17.
Chem Biol Drug Des ; 93(6): 979-985, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30218500

RESUMO

A new propeller-like small molecule was synthesized with three terminal amino side groups. The molecule was found to be a selective nucleic acid binder towards telo21 G-quadruplex DNA compared with other representative nucleic acids including single-stranded DNA (dA21), duplex DNA (ds26) and RNA. The fluorescent signal of the molecule upon interaction with telo21 G-quadruplex structure shows remarkable enhancement (Fmax /F0  = 17.9) while interaction with other nucleic acids shows the signal enhancement which is less than 2.1. In addition, a good linear relationship of binding signal correlated with the concentration of telo21 DNA was obtained. Molecular docking study was also performed to acquire the binding behaviour and its interaction modes of the molecule with the structure of human telomeric DNA G-quadruplex. The modelling results show that the three conjugated terminal units (dimethylaminobenzyl groups) associated through the ethylene bridges with the central methylated pyridine ring formed a co-planar conformation upon stacking onto the G-quartets via pi-pi stacking interactions. This could be the key reason that the molecule shows excellent fluorescent signal of binding towards telo21 G-quadruplex DNA rather than other types of nucleic acids.


Assuntos
DNA/metabolismo , Quadruplex G , Corantes Fluorescentes/química , Humanos , Simulação de Acoplamento Molecular
18.
Eur J Med Chem ; 161: 141-153, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30347327

RESUMO

The increasing incidences of multidrug resistant bacterial infections urge the development of novel antibacterial having a new mechanism of action. The small molecule-based inhibitors targeting at the cell division protein FtsZ has been recognized as a promising approach to search for new antibacterial with high potency. In the present study, a series of novel 2,4-disubstituted-6-thiophenyl-pyrimidine derivatives were synthesized and their antibacterial activities against clinically related pathogens were investigated. The compounds show strong antibacterial activities against MRSA and VREs. The antibacterial activity of compound Bb2 against MRSA and VREs (MIC values: 2 µg/mL) is stronger than that of methicillin and vancomycin. From the in vitro and in vivo results, Bb2 was found to inhibit GTPase activity and FtsZ polymerization. The compound is able to inhibit bacterial cell division through interacting with GTP binding site of FtsZ and thus causing cell death. In addition, S. aureus was found to develop resistance to methicillin but not for Bb2, which was proved in our resistance generation experiments.


Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pirimidinas/farmacologia , Tiofenos/farmacologia , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química
19.
Front Microbiol ; 9: 2955, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30546356

RESUMO

The emergence of vancomycin-intermediate Staphylococcus aureus (VISA) has raised healthcare concerns worldwide. VISA is often associated with multiple genetic changes. However, the relative contributions of these changes to VISA phenotypes are incompletely defined. We have characterized VISA XN108 with vancomycin MIC of 12 µg/ml. Genome comparison revealed that WalK(S221P), GraS(T136I), and RpoB(H481N) mutations possibly contributed to the VISA phenotype of XN108. In this study, the above mutations were stepwise cured, and the phenotypes between XN108 and its derivates were compared. We constructed four isogenic mutant strains, XN108-WalK(P221S) (termed as K65), XN108-GraS(I136T) (termed as S65), XN108-RpoB(N481H) (termed as B65), and XN108-WalK(P221S)/GraS(I136T) (termed as KS65), using the allelic replacement experiments with the native alleles derived from a vancomycin-susceptible S. aureus isolate DP65. Antimicrobial susceptibility test revealed K65 and S65 exhibited decreased vancomycin resistance, whereas B65 revealed negligibly differed when compared with the wild-type XN108. Sequentially introducing WalK(P221S) and GraS(I136T) completely converted XN108 into a VSSA phenotype. Transmission electronic microscopy and autolysis determination demonstrated that cell wall thickening and decreasing autolysis were associated with the change of vancomycin resistance levels. Compared with XN108, K65 exhibited 577 differentially expressed genes (DEGs), whereas KS65 presented 555 DEGs. Of those DEGs, 390 were common in K65 and KS65, including those upregulated genes responsible for citrate cycle and bacterial autolysis, and the downregulated genes involved in peptidoglycan biosynthesis and teichoic acid modification. In conclusion, a VSSA phenotype could be completely reconstituted from a VISA strain XN108. WalK(S221P) and GraS(T136I) mutations may work synergistically in conferring vancomycin resistance in XN108.

20.
J Pharmacol Sci ; 137(3): 283-289, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30057277

RESUMO

The antibacterial activity and the synergistic effect with ß-lactam antibiotics of a new 1-methylquinolinium iodide derivative were investigated. The experimental results indicate that the compound possesses a strong antibacterial activity against a panel of bacteria including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus and NDM-1 Escherichia coli with the MIC values from 0.75 µg/mL to 6 µg/mL. In addition, this compound combined with ß-lactam antibiotics shows strong synergistic antimicrobial activities against antibiotic-resistant strains of S. aureus. The results of biochemical studies also reveal that this compound can effectively disrupt GTPase activity, polymerization of FtsZ, and cell division to cause cell death. The compound shows high potential for further development as a new generation of antibacterial agents to fight against the emergence of multidrug-resistant bacteria.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas do Citoesqueleto/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Compostos de Quinolínio/farmacologia , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , beta-Lactamas/farmacologia , Proteínas de Bactérias/metabolismo , Divisão Celular/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana , Sinergismo Farmacológico , Escherichia coli/enzimologia , GTP Fosfo-Hidrolases/metabolismo , Staphylococcus aureus Resistente à Meticilina/citologia , Polimerização/efeitos dos fármacos , beta-Lactamases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA