Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Hazard Mater ; 476: 135117, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972206

RESUMO

Benzoyl peroxide (BPO), as a widely used organic peroxide, has attracted widespread attention from all sectors of society for its environmental hazards and potential risks to human health. Herein, we employed a Förster resonance energy transfer (FRET) strategy to construct a novel ratiometric fluorescent probe CY-DCI for BPO detection in food, zebrafish, and mice. Specifically, a hemicyanine fluorophore and a dicyanoisophorone fluorophore were connected with a piperazine group as donor and acceptor, respectively, and an olefinic unsaturated bond as the reaction site. CY-DCI has favorable selectivity and an excellent detection limit as low as 58.1 nM, and the recovery rates for real-sample detection ranged from 95.8 % to 104 %, with relative standard deviations (RSD) less than 2.58 %. To further improve its practicality, silica gel plates and test strips containing CY-DCI (0-50 µM) were developed for naked-eye detection of BPO with satisfactory results. Additionally, this novel probe was then applied for ratiometric imaging of living zebrafish and mice and showed high ratiometric imaging resolution in the green and red channels, thus demonstrating its practical application for BPO detection and toxicity early warning in food and biosystems.

2.
Exploration (Beijing) ; 4(3): 20230048, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38939864

RESUMO

The fibrillation of amyloid-ß (Aß) is the critical causal factor in Alzheimer's disease (AD), the dissolution and clearance of which are promising for AD therapy. Although many Aß inhibitors are developed, their low Aß-binding affinity results in unsatisfactory effect. To solve this challenge, the Aß sequence-matching strategy is proposed to tail-design dissociable nanosystem (B6-PNi NPs). Herein, B6-PNi NPs aim to improve Aß-binding affinity for effective dissolution of amyloid fibrils, as well as to interfere with the in vivo fate of amyloid for Aß clearance. Results show that B6-PNi NPs decompose into small nanostructures and expose Aß-binding sites in response to AD microenvironment, and then capture Aß via multiple interactions, including covalent linkage formed by nucleophilic substitution reaction. Such high Aß-binding affinity disassembles Aß fibrils into Aß monomers, and induces the reassembly of Aß&nanostructure composite, thereby promoting microglial Aß phogocytosis/clearance via Aß receptor-mediated endocytosis. After B6-PNi NPs treatment, the Aß burden, neuroinflammation and cognitive impairments are relieved in AD transgenic mice. This work provides the Aß sequence-matching strategy for Aß inhibitor design in AD treatment, showing meaningful insight in biomedicine.

3.
Eur J Pharmacol ; 975: 176634, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710356

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory bowel disease with immune dysregulation affecting colon inflammatory response. Recent studies have highlighted that neutrophil extracellular traps (NETs) play an important role in the pathogenesis of UC. Berbamine (BBM), one of the bioactive ingredients extracted from Chinese herbal medicine Berberis vulgaris L, has attracted intensive attentions due to its significant anti-inflammatory activity and a marketing drug for treating leukemia in China. However, the exact role and potential molecular mechanism of BBM against UC remains elusive. In the present study, our results showed that BBM could markedly improve the pathological phenotype and the colon inflammation in mice with dextran sulfate sodium (DSS)-induced colitis. Then, comprehensive approaches combining network pharmacology and molecular docking analyses were employed to predict the therapeutic potential of BBM in treating UC by peptidyl-arginine deiminase 4 (PAD4), a crucial molecule involved in NETs formation. The molecular docking results showed BBM had a high affinity for PAD4 with a binding energy of -9.3 kcal/mol Moreover, PAD4 expression and NETs productions, including citrullination of histone H3 (Cit-H3), neutrophil elastase (NE), myeloperoxidase (MPO) in both neutrophils and colonic tissue were reduced after BBM administration. However, in the mice with DSS-induced colitis pretreated with GSK484, a PAD4-specific inhibitor, BBM could not further reduce disease related indexes, expression of PAD4 and NETs productions. Above all, the identification of PAD4 as a potential target for BBM to inhibit NETs formation in colitis provides novel insights into the development of BBM-derived drugs for the clinical management of UC.


Assuntos
Benzilisoquinolinas , Sulfato de Dextrana , Armadilhas Extracelulares , Simulação de Acoplamento Molecular , Proteína-Arginina Desiminase do Tipo 4 , Animais , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Camundongos , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Benzilisoquinolinas/química , Masculino , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/patologia , Colite/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/imunologia , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Camundongos Endogâmicos C57BL , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/química , Modelos Animais de Doenças
4.
J Ethnopharmacol ; 333: 118260, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38685367

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Wumei Wan (WMW), a traditional Chinese medicine prescription, has been proved to be effective in treating Colitis-associated colorectal cancer (CAC), but it has not been proven to be effective in different stages of CAC. AIM OF THE STUDY: The purpose of our study is to investigate the therapeutic effect and mechanism of WMW on the progression of CAC. MATERIALS AND METHODS: Azioximethane (AOM) and dextran sulfate sodium (DSS) were used to treat mice for the purpose of establishing CAC models. WMW was administered in different stages of CAC. The presentative chemical components in WMW were confirmed by LC-MS/MS under the optimized conditions. The detection of inflammatory cytokines in the serum and colon of mice were estimated by qRT-PCR and ELISA. The changes of T cells and myeloid-derived suppressor cells (MDSCs) in each group were detected by flow cytometry. The metabolic components in serum of mice were detected by UPLC-MS/MS. Expression of genes and proteins were detected by eukaryotic transcriptomics and Western blot to explore the key pathway of WMW in preventing CAC. RESULTS: WMW had significant effect on inhibiting inflammatory responses and tumors during the early development stage of CAC when compared to other times. WMW increased the length of mice's colons, reduced the level of IL-1ß, IL-6, TNF-α in colon tissues, and effectively alleviated colonic inflammation, and improved the pathological damage of colon tissues. WMW could significantly reduce the infiltration of MDSCs in the spleen, increase CD4+ T cells and CD8+ T cells in the spleen of CAC mice, and effectively reform the immune microenvironment in CAC mice. Transcriptomics analysis revealed that 2204 genes had different patterns of overlap in the colon tissues of mice between control group, AOM + DSS group, and early administration of WMW group. And KEGG enrichment analysis showed that PI3K/Akt signaling pathway, ECM-receptor interaction, IL-17 signaling pathway, MAPK signaling pathway, pancreatic secretion, thermogenesis, and Rap1 signaling pathway were all involved. The serum metabolomics results of WMW showed that the metabolic compositions of the control group, AOM + DSS group and the early stage of WMW were different, and 42 differential metabolites with the opposite trends of changes were screened. The metabolic pathways mainly included pyrimidine metabolism, glycine, serine and threonine metabolism, tryptophan metabolism, and purine metabolism. And amino acids and related metabolites may play an important role in WMW prevention of CAC. CONCLUSION: WMW can effectively prevent the occurrence and development of CAC, especially in the initial stage. WMW can reduce the immune infiltration of MDSCs in the early stage. Early intervention of WMW can improve the metabolic disorder caused by AOM + DSS, especially correct the amino acid metabolism. PI3K/Akt signaling pathway was inhabited in early administration of WMW, which can regulate the amplification and function of MDSCs.


Assuntos
Neoplasias Associadas a Colite , Sulfato de Dextrana , Medicamentos de Ervas Chinesas , Células Supressoras Mieloides , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Neoplasias Associadas a Colite/tratamento farmacológico , Neoplasias Associadas a Colite/prevenção & controle , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Citocinas/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Colite/tratamento farmacológico , Colite/complicações , Colite/metabolismo , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Camundongos Endogâmicos C57BL
5.
ACS Appl Mater Interfaces ; 16(12): 15514-15524, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488069

RESUMO

With the increasing development of nanomaterials, the construction of multiscale nanostructured interphase has emerged as a viable technique to reinforce carbon fiber-reinforced polymer composites. Here, "flexible" aramid nanofibers (ANFs) were first introduced on the surface of carbon fibers (CF) by electrophoretic deposition (EPD), and then "rigid" MXene sheets were grafted by ultrasonic impregnation. This feasible two-step treatment introduces a hierarchical "rigid-flexible" structure at the CF/polyamide (PA) interface. Results showed that this "rigid-flexible" multilayer structure improved the roughness, chemical bonding, mechanical interlocking, and wettability of CF/PA composites. At the same time, the modulus variation between the fiber and the matrix is significantly smoothed due to the increased thickness of the interfacial layer, increasing the payload transfer from the PA matrix to the fiber and decreasing the stress concentration. Compared to the desized CF, the interlaminar shear strength (ILSS) and tensile strength of the modified CF-ANF@MX0.2/PA composite increased by 50.02 and 36.11%, respectively. This innovative interfacial design and feasible treatment method facilitate the construction of firmly interacting interfacial layers in CF/PA composites, offering broad prospects for the production of high-performance CF/PA composites.

6.
Water Res ; 253: 121326, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377928

RESUMO

Cadmium (Cd) is a widespread and highly toxic environmental pollutant, seriously threatening animal and plant growth. Therefore, monitoring and employing robust tools to enrich and remove Cd from the environment is a major challenge. In this work, by conjugating a fluorescent indicator (CCP) with a functionalized glass slide, a special composite material (CCPB) was constructed to enrich, remove, and monitor Cd2+ in water rapidly. Then Cd2+ could be effectively eluted by immersing the Cd-enriched CCPB in an ethylenediaminetetraacetic acid (EDTA) solution. With this, the CCPB was continuously reused. Its recovery of Cd2+was above and below 100 % after multiple uses by flame atomic absorption spectrometry (FAAS), which was excellent for practical use in enriching and removing Cd2+ in real aqueous samples. Therefore, CCPB is an ideal material for monitoring, enriching, and removing Cd2+ in wastewater, providing a robust tool for future practical applications of Cd enrichment and removal in the environment.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Cádmio/análise , Água/química , Ácido Edético/química , Águas Residuárias , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise , Espectrofotometria Atômica/métodos , Adsorção
7.
J Hazard Mater ; 466: 133653, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301443

RESUMO

Cadmium-contaminated water and food are seriously hazardous to the human health, especially liver injury. To understand the entanglement relationship between cadmium ion (Cd2+)-induced liver injury and the biomarker sulfur dioxide (SO2), a reliable bioanalytical tool is urgently needed, detecting SO2 to diagnose and evaluate the extent of liver injury in vivo. Herein, based on the Förster resonance energy transfer (FRET) mechanism, a novel SO2-tunable NIR ratiometric fluorescent probe (SMP) was developed, it was used to diagnose and treat liver injury induced by Cd2+ in biosystems. Specifically, it was constructed by conjugating a NIR dicyanoisophorone with a NIR benzopyranate as the donor and acceptor, respectively, and the ratiometric response of SO2- regulated by the Michael addition reaction. In addition, SMP exhibits rapid reaction time (<15 s), two well-resolved emission peaks (68 nm) with less cross-talk between channels for high imaging resolution, superior selectivity, and low limit of detection (LOD=80.3 nM) for SO2 detection. Impressively, SMP has been successfully used for intracellular ratiometric imaging of Cd2+-induced SO2 and diagnostic and therapeutic evaluation in liver injury mice models with satisfactory results. Therefore, SMP may provide a powerful molecular tool for revealing the occurrence and development relationship between SO2 and Cd2+-induced liver injury. ENVIRONMENTAL IMPLICATION: Cadmium ions are one of the well-known toxic environmental pollutants, which are enriched in the human body through inhalation of cadmium-contaminated air or from the food chain, leading to damage in various organs, especially liver injury. Therefore, we developed a novel fluorescent probe that can specifically detect SO2 in Cd2+-induced liver injury, which is critically important for the diagnosis and evaluation of Cd2+-induced liver injury diseases. The specific detection of SO2 of this probe has been successfully demonstrated in live HepG2 cells and Cd2+-induced liver injury mice.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Corantes Fluorescentes , Camundongos , Humanos , Animais , Cádmio/toxicidade , Células Hep G2 , Dióxido de Enxofre/toxicidade , Células HeLa
8.
Analyst ; 149(3): 638-664, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38170876

RESUMO

With the increase in people's living standards, the number of patients suffering from liver injury keeps on increasing. Traditional diagnostic methods can no longer meet the needs of early and accurate diagnosis due to their limitations in application. However, fluorescent probes based on different fluorophores and nanomaterials have been gradually lighting up medical research due to their unique properties, such as high specificity and non-invasiveness. In addition, accurate identification of the different types of liver injury biomarkers can significantly improve the level of early diagnosis. Therefore, this review reviews the fluorescent probes used in the detection of biomarkers of liver injury over recent years and briefly summarizes the corresponding biomarkers of different types of liver injury. Impressively, this review also lists the structures and the response mechanisms of the different probes, and concludes with an outlook, suggesting directions in which improvements can be made. Finally, we hope that this review will contribute to the further development of fluorescent probes for the early diagnosis and assessment of liver injury.


Assuntos
Corantes Fluorescentes , Nanoestruturas , Humanos , Corantes Fluorescentes/química , Diagnóstico Precoce , Imagem Óptica/métodos , Biomarcadores
9.
Int J Oncol ; 64(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38214378

RESUMO

Long­stranded non­coding RNAs (lncRNAs) are RNAs that consist of >200 nucleotides. The majority of lncRNAs do not encode proteins but have been revealed to mediate a variety of important physiological functions. Antisense­lncRNAs (AS­lncRNAs) are transcribed from the opposite strand of a protein or non­protein coding gene as part of the antisense strand of the coding gene. AS­lncRNAs can serve an important role in the tumorigenesis, prognosis, metastasis and drug resistance of a number of malignancies. This has been reported to be exerted through various mechanisms, such as endogenous competition, promoter interactions, direct interactions with mRNAs, acting as 'scaffolds' to regulate mRNA half­life, interactions with 5­untranslated regions and regulation of sense mRNAs. AS­lncRNAs have been found to either inhibit or promote tumor aggressiveness by regulating cell proliferation, energy metabolism, inflammation, inflammatory­carcinoma transformation, invasion, migration and angiogenesis. In addition, accumulating evidence has documented that AS­lncRNAs can regulate tumor therapy resistance. Therefore, targeting aberrantly expressed AS­lncRNAs for cancer treatment may prove to be a promising approach to reverse therapy resistance. In the present review, research advances on the role of AS­lncRNAs in tumor occurrence and development were summarized, with the aim of providing novel ideas for further research in this field.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Neoplasias/genética , Regulação Neoplásica da Expressão Gênica
10.
Dalton Trans ; 52(31): 10769-10777, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37477202

RESUMO

A Tb-MOF with a 5,5,6-c 3-nodal net, {[Tb(DTDA)1.5·2H2O]·DMF·8H2O}n (AQNU-4), has been synthesized (DTDA = 2',5'-diethoxy-[1,1':4',1''-terphenyl]-4,4''-dicarboxylic acid). AQNU-4 contains a 1-periodic secondary building unit (rod SBU) and has an unusual topological type with the point symbol {32·44·62·7·8}{32·46·5·6}{32·46·52·65}. Efficient light harvesting and electron-hole separation make AQNU-4 an effective photocatalyst for use in the CO2 reduction reaction (CO2RR). Interestingly, as a photocatalyst, AQNU-4 shows an obvious solvent dependence during the catalytic process. In cyclohexanone in particular, it shows the highest CO2 to CO conversion, reaching 138.65 µmol g-1 h-1, making AQNU-4 a good solvent-responsive MOF material.

11.
Environ Res ; 236(Pt 2): 116769, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517500

RESUMO

Considering the formidable explosive power and human carcinogenicity of nitroaromatic explosives, the implementation of an accurate and sensitive detection technology is imperative for ensuring public safety and monitoring post-blast environmental contamination. In the present work, a versatile and selective electrochemical sensor based on dummy molecularly imprinted poly (3,4-ethylenedioxythiophene)/laser-induced graphene (MIPEDOT/LIG) was successfully developed and the specific detection of multiple nitroaromatic explosives was realized in the single sensor. The accessible and nontoxic trimesic acid (TMA) and superior 3, 4-ethylenedioxythiophene (EDOT) were selected as the dummy-template and the functional monomer, respectively. The interaction between the functional monomer and the template, and the morphology, electrochemical properties and detection performance of the sensor were comprehensively investigated by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry. Benefiting from the alliance of TMA and EDOT, the MIPEDOT/LIG sensor manifested outstanding selectivity and sensitivity for 2,4,6-trinitrotolueen (TNT), 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT), 1,3,5-trinitrobenzene (TNB), 2,4-dinitrophenol (DNP), and 1,3-dinitrobenzene (DNB) (representative nitroaromatic explosives) with limits of determination of 1.95 ppb, 3.06 ppb, 2.49 ppb, 1.67 ppb, 1.94 ppb, and 4.56 ppb, respectively. The sensor also exhibited extraordinary reliability and convenience for environmental sample detection. Therefore, a perfect combination of versatility and selectivity in the MIPEDOT/LIG sensor was achieved. The findings of this work provide a new direction for the development of multi-target electrochemical sensors using a versatile dummy template for explosives detection.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123178, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499473

RESUMO

Abiotic stress and oxidative stress are closely related to the health status of plants. Plants will produce oxidative stress under abiotic stress, induce mitochondrial dysfunction, cause programmed cell death, and decrease plant survival rate. It is well known that rice is an essential crop for humans, but its cadmium tolerance is poor. Therefore, it is crucial to determine whether cadmium stress causes oxidative stress in rice in order to guide rice cultivation. Hydrogen peroxide (H2O2), a highly reactive oxygen species (ROS), is one of the most critical signals in corps under oxidative stress. In this work, we adopted a near-infrared (NIR) H2O2 fluorescent probe YFE-1 and a cadmium ion (Cd2+) fluorescent probe SCP to observe the fluctuation of H2O2 in rice roots under Cd2+ co-incubation conditions. Due to the advantages of fast response (within 2 min), a large Stokes shift (181 nm), good selectivity, and a low detection limit (LOD:26.4 nM), YFE-1 achieved the visualization of H2O2 produced by Cd2+ stress in rice roots. This study provides a new idea for assessing the risk of oxidative stress of Cd2+ in rice roots. It is expected to guide the control of Cd2+ in the rice planting industry to improve rice yield.


Assuntos
Cádmio , Oryza , Humanos , Cádmio/metabolismo , Peróxido de Hidrogênio/metabolismo , Oryza/metabolismo , Corantes Fluorescentes/metabolismo , Fluorescência , Estresse Oxidativo , Antioxidantes/metabolismo , Plantas/metabolismo , Raízes de Plantas/metabolismo
13.
Microbiol Spectr ; 11(3): e0021823, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199643

RESUMO

Mesomycoplasma hyopneumoniae is the etiological agent of mycoplasmal pneumonia of swine (MPS), which causes substantial economic losses to the world's swine industry. Moonlighting proteins are increasingly being shown to play a role in the pathogenic process of M. hyopneumoniae. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key enzyme in glycolysis, displayed a higher abundance in a highly virulent strain of M. hyopneumoniae than in an attenuated strain, suggesting that it may have a role in virulence. The mechanism by which GAPDH exerts its function was explored. Flow cytometry and colony blot analysis showed that GAPDH was partly displayed on the surface of M. hyopneumoniae. Recombinant GAPDH (rGAPDH) was able to bind PK15 cells, while the adherence of a mycoplasma strain to PK15 was significantly blocked by anti-rGAPDH antibody pretreatment. In addition, rGAPDH could interact with plasminogen. The rGAPDH-bound plasminogen was demonstrated to be activated to plasmin, as proven by using a chromogenic substrate, and to further degrade the extracellular matrix (ECM). The critical site for GAPDH binding to plasminogen was K336, as demonstrated by amino acid mutation. The affinity of plasminogen for the rGAPDH C-terminal mutant (K336A) was significantly decreased according to surface plasmon resonance analysis. Collectively, our data suggested that GAPDH might be an important virulence factor that facilitates the dissemination of M. hyopneumoniae by hijacking host plasminogen to degrade the tissue ECM barrier. IMPORTANCE Mesomycoplasma hyopneumoniae is a specific pathogen of pigs that is the etiological agent of mycoplasmal pneumonia of swine (MPS), which is responsible for substantial economic losses to the swine industry worldwide. The pathogenicity mechanism and possible particular virulence determinants of M. hyopneumoniae are not yet completely elucidated. Our data suggest that GAPDH might be an important virulence factor in M. hyopneumoniae that facilitates the dissemination of M. hyopneumoniae by hijacking host plasminogen to degrade the extracellular matrix (ECM) barrier. These findings will provide theoretical support and new ideas for the research and development of live-attenuated or subunit vaccines against M. hyopneumoniae.


Assuntos
Mycoplasma hyopneumoniae , Pneumonia Suína Micoplasmática , Suínos , Animais , Virulência , Plasminogênio/metabolismo , Pneumonia Suína Micoplasmática/prevenção & controle , Mycoplasma hyopneumoniae/genética , Mycoplasma hyopneumoniae/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Matriz Extracelular
14.
Environ Sci Pollut Res Int ; 30(33): 79807-79820, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37195606

RESUMO

To achieve sustainable development goals and to solve environmental problems, land resources in eco-sensitive areas should be used and optimized. Qinghai, which is an important eco-sensitive area in China, represents a typical ecological vulnerable region on the Qinghai-Tibetan Plateau. Using land use/cover data for 2000, 2010 and 2020, this study applied a series of quantitative methods to analyze the spatial pattern and structure of the production-living-ecological space (PLES) in Qinghai. The results indicated that the spatial pattern of the PLES in Qinghai was stable over time, but the spatial distribution was very different. The structure of the PLES in Qinghai was stable, and the proportion of each space from high to low was ecological (81.01%), production (18.13%) and living (0.86%). We found that the proportion of ecological space in both the Qilian Mountains and the Three River Headwaters Region was lower than the rest of the study area, except for the Yellow River-Huangshui River Valley. Our study objectively and credibly presented the characteristics of the PLES in an important eco-sensitive area in China. This study further formulated targeted policy suggestions to provide a basis for regional sustainable development, ecological environment protection, and land and space optimization in Qinghai.


Assuntos
Rios , Desenvolvimento Sustentável , Tibet , China , Rios/química , Conservação dos Recursos Naturais , Ecossistema
15.
Sci Total Environ ; 881: 163551, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37072101

RESUMO

Coastal wetlands are an important carbon sink but are sensitive to climate changes. The response of CO2 emissions to these changes differs under different hydroclimatic conditions. Here, this article used meta-analysis to synthesize data from Chinese coastal salt marshes, to analyze sensitivities for CO2 emissions, and then to assess the relative contributions of air temperature (Ta) and precipitation (Pre). This article used the ratio between potential evaporation (Ep) and Pre to divide Chinese coastal saltmarshes into water- (Ep/Pre > 1) and energy-limited regions (Ep/Pre ≤ 1). Results show that emissions are more sensitive to both Pre and Ta in water-limited regions (E¯ = 0.60 eV, slope = 0.37) than in energy-limited regions (E¯ = 0.23 eV, slope = 0.04). Comparing the relative effects of changes in Ta (△CO2 = 21.86 mg m-2 h-1) and Pre (△CO2 = 7.19 mg m-2 h-1) on CO2 emissions shows that warming contributes more to changes in CO2 emissions. The response of emissions to changes in Pre is asymmetric and shows that warmer and drier may have antagonistic effects, while warmer and wetter may have synergistic effects. There was a 2.15 mg m-2 h-1 change in emissions in energy-limited regions when Pre increased by 139.69 mm, and a decrease of -0.15 mg m-2 h-1 in emissions when Pre decreased by 1.28 mm in water-limited regions. Climate change has the greatest impact on Phragmites australis in CO2 emissions, especially under warmer and wetter conditions in energy-limited regions. This indicates that warming drives CO2 emissions, while changes in Pre (resulting in wetter or dryer conditions) can mitigate or strengthen CO2 emissions from coastal wetlands in China. This article offers a new perspective and suggests that differences in hydroclimatic conditions should be considered when discussing carbon emissions from coastal wetlands.

16.
Acta Pharm Sin B ; 13(2): 775-786, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873182

RESUMO

The typical hallmark of tumor evolution is metabolic dysregulation. In addition to secreting immunoregulatory metabolites, tumor cells and various immune cells display different metabolic pathways and plasticity. Harnessing the metabolic differences to reduce the tumor and immunosuppressive cells while enhancing the activity of positive immunoregulatory cells is a promising strategy. We develop a nanoplatform (CLCeMOF) based on cerium metal-organic framework (CeMOF) by lactate oxidase (LOX) modification and glutaminase inhibitor (CB839) loading. The cascade catalytic reactions induced by CLCeMOF generate reactive oxygen species "storm" to elicit immune responses. Meanwhile, LOX-mediated metabolite lactate exhaustion relieves the immunosuppressive tumor microenvironment, preparing the ground for intracellular regulation. Most noticeably, the immunometabolic checkpoint blockade therapy, as a result of glutamine antagonism, is exploited for overall cell mobilization. It is found that CLCeMOF inhibited glutamine metabolism-dependent cells (tumor cells, immunosuppressive cells, etc.), increased infiltration of dendritic cells, and especially reprogrammed CD8+ T lymphocytes with considerable metabolic flexibility toward a highly activated, long-lived, and memory-like phenotype. Such an idea intervenes both metabolite (lactate) and cellular metabolic pathway, which essentially alters overall cell fates toward the desired situation. Collectively, the metabolic intervention strategy is bound to break the evolutionary adaptability of tumors for reinforced immunotherapy.

17.
Vet Microbiol ; 277: 109622, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36543089

RESUMO

Interferon-induced transmembrane proteins (IFITMs) play an important role in the innate immune response triggered by viral infection. Transmissible gastroenteritis virus (TGEV) causes severe diarrhea, vomiting and dehydration in piglets, resulting in huge economic losses to the swine industry. In this study, we showed that IFITM3 inhibits the replication of TGEV and interferes with the binding of TGEV to PK15 cells. Moreover, the inhibitory effect of IFITM3 on TGEV circumvents the upregulation of inflammatory cytokines. Subsequently, we found that the M22A mutant loses part of the antiviral effect of IFITM3 on TGEV; in contrast, the K24A mutant enhances the antiviral effect of IFITM3. Notably, our data shows a synergistic effect between IFITM3 and CQ, which further amplifies the antiviral effect against TGEV.


Assuntos
Gastroenterite Suína Transmissível , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , Suínos , Vírus da Gastroenterite Transmissível/genética , Interferons , Antivirais , Imunidade Inata
18.
Appl Opt ; 61(26): 7706-7712, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36256371

RESUMO

Plasmonic absorbers have received considerable attention because of their promising applications in solar cells, controllable thermal emission, and infrared detection. Most proposed plasmonic absorbers are fabricated with a precisely designed surface-pattern, which require complex manufacturing process and are costly. Herein, we propose a simple plasmonic absorber composed of a triple-layer Ti/SiO2/TiN nanosystem. The maximal absorption reaches 99.8% from 1554 nm to 1565 nm, and an average absorption of 95.3% is achieved in the long-wave near-infrared range (from 1100 nm to 2500 nm). The synergistic effect of the upper surface plasmon resonance and the Fabry-Perot resonance in the Ti/SiO2/TiN cause the high absorption. Additionally, the effects of the incident angle, polarization state, structural materials, and geometric parameters on the absorption performance are investigated in detail. The proposed near-infrared absorber has potential application prospects in solar collectors, thermal emitters, and solar cells, owing to its high absorption, ultra-broadband bandwidth, insensitivity to incident angle and polarization state, low cost, and simple preparation process.

19.
Front Vet Sci ; 9: 934907, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937288

RESUMO

Mycoplasma hyopneumoniae is the etiological agent of swine enzootic pneumonia (EP), which resulting in considerable economic losses in pig farming globally. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is a major tool for gene expression studies. However, no internal reference genes for normalization of RT-qPCR data of M. hyopneumoniae have been reported. The aim of this study was to screen the most stable genes for RT-qPCR analysis in M. hyopneumoniae under different conditions. Therefore, a total of 13 candidate internal reference genes (rpoC, Lipo, sgaB, oppB, hypo621, oppF, gyrB, uvrA, P146, prfA, proS, gatB, and hypo499) of M. hyopneumoniae filtered according to the reported quantitative proteomic analysis and the 16S rRNA internal reference gene frequently used in other bacteria were selected for RT-qPCR analysis. The mRNAs from different virulence strains (168, 168 L, J, NJ, and LH) at five different growth phases were extracted. The corresponding cycle threshold (Ct) values of the 25 reverse transcribed cDNAs using the 14 candidate genes were determined. Different internal reference genes or combinations were then screened for expression stability analysis using various statistical tools and algorithms, including geNorm, BestKeeper, and NormFinder software, to ensure the reliability of the analysis. Through further comprehensive evaluation of the RefFinder software, it is concluded that the gatB gene was the most suitable internal reference gene for samples of the different virulence strains in different growth phases for M. hyopneumoniae, followed by prfA, hypo499, and gyrB.

20.
Front Cell Infect Microbiol ; 12: 906349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873168

RESUMO

Noncommunicable diseases (NCDs) lead to 41 million deaths every year and account for 71% of all deaths worldwide. Increasing evidence indicates that gut microbiota disorders are closely linked to the occurrence and development of diseases. The gut microbiota, as a potential transmission medium, could play a key role in the transmission and treatment of diseases. The gut microbiota makes noncommunicable diseases communicable. New methods of the prevention and treatment of these diseases could be further explored through the gut microbiota.


Assuntos
Microbioma Gastrointestinal , Doenças não Transmissíveis , Transplante de Microbiota Fecal , Humanos , Doenças não Transmissíveis/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA