Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 283: 114716, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34626781

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fructus Tribuli (FT) has been commonly used as a traditional medicine for thousands of years. With the diverse uses of FT, more attention has been paid to its hepatorenal toxicity. However, the compounds causing the hepatorenal toxicity of FT remain undetermined. Terrestrosin D (TED), a major spirostanol saponin isolated from FT, may exert hepatorenal toxicity. AIM OF THE STUDY: This study aimed to evaluate the potential hepatorenal toxicity of TED, and preliminarily explore the possible mechanism of TED-induced hepatorenal toxicity. MATERIALS AND METHODS: Cytotoxicity assays, a repeated-dose 28-day in-vivo study, a toxicokinetic study, and a tissue distribution study were used to evaluate the potential hepatorenal toxicity of TED. Furthermore, network pharmacology was applied to preliminarily explore the possible mechanism of TED-induced hepatorenal toxicity. RESULTS: Both the in vitro and in vivo studies showed that the spirostanol saponin TED had potential hepatorenal toxicity. Nonetheless, hepatorenal toxicity induced by oral treatment with TED at a dosage range of 5 - 15 mg/kg daily for 28 consecutive days to Sprague-Dawley (SD) rats was reversible after 14 days of TED withdrawal. The toxicokinetic study demonstrated that the systematic exposure of SD rats to TED had an accumulation phenomenon and a dose-dependent trend after a 28-day repeated-dose oral administration. The tissue distribution study revealed that TED had a targeted distribution in the liver and kidneys accompanied by a phenomenon of accumulation in SD rats. Network pharmacology combined with molecular docking methods was used to screen for the key targets (HSP90AA1, CNR1, and DRD2) and the key pathways of TED-induced hepatorenal toxicity. CONCLUSIONS: The spirostanol saponin TED, a major spirostanol saponin isolated from FT, had potential hepatorenal toxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Nefropatias/induzido quimicamente , Saponinas/toxicidade , Tribulus/química , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Masculino , Simulação de Acoplamento Molecular , Farmacologia em Rede , Ratos , Ratos Sprague-Dawley , Saponinas/administração & dosagem , Saponinas/isolamento & purificação , Saponinas/farmacocinética , Distribuição Tecidual , Testes de Toxicidade
2.
Zhongguo Zhong Yao Za Zhi ; 44(14): 3049-3054, 2019 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-31602852

RESUMO

The contents of terrestrosin D and hecogenin from Tribuli Fructus were determined before and after stir-frying. The results showed that the content of terrestrosin D was decreased significantly,and the content of hecogenin was increased significantly after such processing. In order to verify the inference that terrestrosin D was converted to hecogenin by stir-frying,the quantitative variation rules of terrestrosin D and hecogenin were studied by simulated processing technology,and the simulated processing product of terrestrosin D was qualitatively characterized by ultra performance liquid chromatography/time of flight mass spectrometry( UPLC-TOF/MS) to clarify its transformation process during stir-frying. The results showed that the content of terrestrosin D was decreased significantly at first and then a platform stage appeared with the prolongation of processing time at a certain temperature. Raising the stir-frying temperature could further decrease the content of terrestrosin D and delay the time that the platform stage appeared. When the processing was simulated at higher temperatures( 220 ℃ and 240 ℃),the content of hecogenin was increased gradually with the increase of processing temperature and the prolongation of processing time. In the process of stir-frying,the deglycosylation reaction of terrestrosin D to hecogenin was not completed in one step. The deglycosylation reaction occurred first at the end of the sugar chain,and then other glycosyl units in the sugar chain were sequentially removed from the outside to the inside to finally form the hecogenin. This study provides a basis for further revealing the detoxification mechanism of stir-fried Tribuli Fructus.


Assuntos
Frutas/química , Sapogeninas/análise , Zygophyllaceae/química , Cromatografia Líquida , Temperatura Alta , Compostos Fitoquímicos/análise , Espectrometria de Massas em Tandem
3.
Zhongguo Zhong Yao Za Zhi ; 44(15): 3297-3304, 2019 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-31602886

RESUMO

The contents of terrestroside B and terrestrosin K in Tribuli Fructus with different degree of stir-frying were determined by high performance liquid chromatography with evaporative light-scattering detector( HPLC-ELSD). The results showed that the contents of terrestroside B and terrestrosin K were increased at first and then decreased,and both of them had the highest content at the best time of heating. The results of simulated processing of Tribulus Terrestris saponins showed that when the processing time kept constant,the contents of terrestroside B and terrestrosin K were decreased gradually with the increase of processing temperature from 180 ℃ to240 ℃. At a certain temperature,the content of terrestrosin K was increased first and then decreased with the prolongation of processing time,and reached the highest level at 5 min. However,the content of terrestroside B was increased first and then decreased with the increase of processing time only at 180 ℃,and reached the highest level at 10 min. When the processing temperature was controlled at200,220 and 240 ℃ respectively,the content of terrestroside B was decreased gradually with the increase of processing time. The simulated processing products of tribuluside A,terrestroside B and terrestrosin K were qualitatively characterized by ultra-performance liquid chromatography-time of flight mass spectrometry( UPLC-TOF/MS). It was proved that tribuluside A and terrestrosin Ⅰ containing C-22-OH were dehydroxylated in the processing of Tribuli Fructus and transformed respectively into terrestroside B and terrestrosin K containing C-20-C-22 double bond. As a result,the contents of terrestroside B and terrestrosin K were increased. The sugar chains at C-3 and C-26 positions of terrestroside B and terrestrosin K could be deglycosylated and converted into monosaccharide chain saponins and short sugar chain saponins,so the contents of terrestroside B and terrestrosin K were reduced. The study provides reference for further revealing the processing principle of Tribuli Fructus.


Assuntos
Medicamentos de Ervas Chinesas/análise , Saponinas/análise , Tribulus/química , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Frutas/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA