Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1142199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153160

RESUMO

Background: Multinational studies have reported that the implementation of nonpharmaceutical interventions (NPIs) to control severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission coincided with the decline of other respiratory viruses, such as influenza viruses and respiratory syncytial virus. Objective: To investigate the prevalence of common respiratory viruses during the coronavirus disease 2019 (COVID-19) pandemic. Methods: Respiratory specimens of children with lower respiratory tract infections (LRTIs) hospitalized at the Children's Hospital of Chongqing Medical University from January 1, 2018 to December 31, 2021 were collected. Seven common pathogens, including respiratory syncytial virus (RSV), adenovirus (ADV), influenza virus A and B (Flu A, Flu B), and parainfluenza virus types 1-3 (PIV1-3), were detected by a multiplex direct immunofluorescence assay (DFA). Demographic data and laboratory test results were analyzed. Results: 1) A total of 31,113 children with LRTIs were enrolled, including 8141 in 2018, 8681 in 2019, 6252 in 2020, and 8059 in 2021.The overall detection rates decreased in 2020 and 2021 (P < 0.001). The detection rates of RSV, ADV, Flu A, PIV-1, and PIV-3 decreased when NPIs were active from February to August 2020, with Flu A decreasing most predominantly, from 2.7% to 0.3% (P < 0.05). The detection rates of RSV and PIV-1 resurged and even surpassed the historical level of 2018-2019, while Flu A continued decreasing when NPIs were lifted (P < 0.05). 2) Seasonal patterns of Flu A completely disappeared in 2020 and 2021. The Flu B epidemic was observed until October 2021 after a long period of low detection in 2020. RSV decreased sharply after January 2020 and stayed in a nearly dormant state during the next seven months. Nevertheless, the detection rates of RSV were abnormally higher than 10% in the summer of 2021. PIV-3 decreased significantly after the COVID-19 pandemic; however, it atypically surged from August to November 2020. Conclusion: The NPIs implemented during the COVID-19 pandemic affected the prevalence and seasonal patterns of certain viruses such as RSV, PIV-3, and influenza viruses. We recommend continuous surveillance of the epidemiological and evolutionary dynamics of multiple respiratory pathogens, especially when NPIs are no longer necessary.


Assuntos
COVID-19 , Influenza Humana , Orthomyxoviridae , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Vírus , Criança , Humanos , Lactente , Pandemias , Criança Hospitalizada , COVID-19/epidemiologia , SARS-CoV-2 , Infecções Respiratórias/epidemiologia , China/epidemiologia , Influenza Humana/epidemiologia
2.
Environ Sci Pollut Res Int ; 27(7): 7234-7243, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31879885

RESUMO

Soil heavy metal pollution, especially lead (Pb) and arsenic (As), is a global issue that requires urgent attention. In the present study, phosphate-modified ferric-based material (PFM) was used to remedy Pb and As co-contaminated soil. The remediation potential of PFM on Pb and As co-contaminated soil was studied by static culture experiments, and the effect on maize (Zea mays L.) seedling growth was studied using pot experiments. The results showed that the bioavailability of Pb and As in the soil and their accumulation in the seedlings were reduced when PFM was added to the soil. At 2-6 wt% PFM, the remediation rates of Pb and As reached 57%-82% and 62%-76%, respectively, and their accumulation in the seedlings decreased by 27.8%-68% and 55.6%-70%. The optimal amount of PFM was 4 wt% of the soil. There was a linear correlation between the amount of DTPA-extractable Pb or NaHCO3-extractable As in the soil and the amount of Pb or As accumulated by the seedlings. The correlation coefficients of Pb and As reached 0.7690-0.8166 and 0.9982-0.9779. Seedling growth was also promoted. Compared with the controls, the seedling emergence rate increased by 1.4%-4%, plant height increased by 4.1%-12.4%, plant weight increased by 29.6%-37%, and the root length increased by 5%-52%. In summary, PFM offers an environmentally friendly approach with excellent potential for the remediation of Pb and As co-contaminated soil.


Assuntos
Arsênio , Compostos Férricos/química , Fosfatos/química , Poluentes do Solo , Arsênio/química , Chumbo/química , Plântula , Solo , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA