RESUMO
[This corrects the article DOI: 10.1016/j.heliyon.2023.e17841.].
RESUMO
The remodeling of actin cytoskeleton of osteoclasts on the bone matrix is essential for osteoclastic resorption activity. A specific regulator of the osteoclast cytoskeleton, integrin αvß3, is known to provide a key role in the degradation of mineralized bone matrixes. Cilengitide is a potent inhibitor of integrins and is capable of affecting αvß3 receptors, and has anti-tumor and anti-angiogenic and apoptosis-inducing effects. However, its function on osteoclasts is not fully understood. Here, the cilengitide role on nuclear factor κB ligand-receptor activator (RANKL)-induced osteoclasts was explored. Cells were cultured with varying concentrations of cilengitide (0,0.002,0.2 and 20 µM) for 7 days, followed by detected via Cell Counting Kit-8, staining for tartrate resistant acid phosphatase (TRAP), F-actin ring formation, bone resorption assays, adhesion assays, immunoblotting assays, and real-time fluorescent quantitative PCR. Results demonstrated that cilengitide effectively restrained the functionality and formation of osteoclasts in a concentration-dependent manner, without causing any cytotoxic effects. Mechanistically, cilengitide inhibited osteoclast-relevant genes expression; meanwhile, cilengitide downregulated the expression of key signaling molecules associated with the osteoclast cytoskeleton, including focal adhesion kinase (FAK), integrin αvß3 and c-Src. Therefore, this results have confirmed that cilengitide regulates osteoclast activity by blocking the integrin αvß3 signal pathway resulting in diminished adhesion and bone resorption of osteoclasts.
RESUMO
Bone targeted delivery of estrogen offers great promise for the clinical application of estrogen in the treatment of postmenopausal osteoporosis (PMOP). However, the current bone-targeted drug delivery system still has several issues that need to be solved, such as the side effects of bone-targeted modifier molecules and the failure of the delivery system to release rapidly in the bone tissue. It is important to aggressively search for new bone-targeted modifier molecules and bone microenvironment-responsive delivery vehicles. Inspired by the distribution of citric acid (CA) mainly in bone tissue and the acidic bone resorption microenvironment, we constructed a CA-modified diblock copolymer poly(2-ethyl-2-oxazoline)-poly(ε-caprolactone) (CA-PEOz) drug delivery system. In our study, we found that the CA modification significantly increased the bone targeting of this drug delivery system, and the delivery system was able to achieve rapid drug release under bone acidic conditions. The delivery system significantly reduced bone loss in postmenopausal osteoporotic mice with a significant reduction in estrogenic side effects on the uterus. In summary, our study shows that CA can act as an effective bone targeting modifier molecule and provides a new option for bone targeting modifications. Our study also provides a new approach for bone-targeted delivery of estrogen for the treatment of PMOP.
RESUMO
Cuprotosis is a new programmed cell death related to cancer. However, the characteristics of cuprotosis in gastric cancer (GC) remain unknown. Ten cuprotosis molecules from 1544 GC patients were used to identify three GC molecular genotypes. Cluster A was characterized by the best clinical outcome and was significantly enriched in metabolic signaling pathways. Cluster B exhibited elevated immune activation, high immune stroma scores and was significantly enriched in tumor immune signaling pathways. Cluster C was characterized by severe immunosuppression and poor response to immunotherapy. Notably, the citrate cycle, cell cycle, and p53 signaling pathways were enriched in the differentially expressed genes among the three subtypes, which were critical signaling pathways for cell death. We also developed a cuprotosis signature risk score that could accurately predict the survival, immunity, and subtype of GC. This study presents a systematic analysis of cuprotosis molecules and provides new immunotherapeutic targets for GC patients.
RESUMO
With increasing age, bone tissue undergoes significant alterations in composition, architecture, and metabolic functions, probably causing senile osteoporosis. Osteoporosis possess the vast majority of bone disease and associates with a reduction in bone mass and increased fracture risk. Bone loss is on account of the disorder in osteoblast-induced bone formation and osteoclast-induced bone resorption. As a unique bone resorptive cell type, mature bone-resorbing osteoclasts exhibit dynamic actin-based cytoskeletal structures called podosomes that participate in cell-matrix adhesions specialized in the degradation of mineralized bone matrix. Podosomes share many of the same molecular constitutions as focal adhesions, but they have a unique structural organization, with a central core abundant in F-actin and encircled by scaffolding proteins, kinases and integrins. Here, we conclude recent advancements in our knowledge of the architecture and the functions of podosomes. We also discuss the regulatory pathways in osteoclast podosomes, providing a reference for future research on the podosomes of osteoclasts and considering podosomes as a therapeutic target for inhibiting bone resorption.
Assuntos
Reabsorção Óssea , Podossomos , Humanos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Reabsorção Óssea/metabolismo , Osteoclastos/metabolismo , Podossomos/metabolismoRESUMO
Wound healing is a complex and error-prone process. Wound healing in adults often leads to the formation of scars, a type of fibrotic tissue that lacks skin appendages. Hypertrophic scars and keloids can also form when the wound-healing process goes wrong. Leptin (Lep) and leptin receptors (LepRs) have recently been shown to affect multiple stages of wound healing. This effect, however, is paradoxical for scarless wound healing. On the one hand, Lep exerts pro-inflammatory and profibrotic effects; on the other hand, Lep can regulate hair follicle growth. This paper summarises the role of Lep and LepRs on cells in different stages of wound healing, briefly introduces the process of wound healing and Lep and LepRs, and examines the possibility of promoting scarless wound healing through spatiotemporal, systemic, and local regulation of Lep levels and the binding of Lep and LepRs.
Assuntos
Cicatriz Hipertrófica , Leptina , Humanos , Cicatriz Hipertrófica/patologia , Leptina/metabolismo , Receptores para Leptina/metabolismo , Pele/metabolismo , Cicatrização , AnimaisRESUMO
The circadian clock regulates many key physiological processes such as the sleep-wake cycle, hormone release, cardiovascular health, glucose metabolism and body temperature. Recent evidence has suggested a critical role of the circadian system in controlling bone metabolism. Here we review the connection between bone metabolism and the biological clock, and the roles of these mechanisms in bone loss. We also analyze the regulatory effects of clock-related genes on signaling pathways and transcription factors in osteoblasts and osteoclasts. Additionally, osteocytes and endothelial cells (ECs) regulated by the circadian clock are also discussed in our review. Furthermore, we also summarize the regulation of circadian clock genes by some novel modulators, which provides us with a new insight into a potential strategy to prevent and treat bone diseases such as osteoporosis by targeting circadian genes.
Assuntos
Ritmo Circadiano , Células Endoteliais , Ritmo Circadiano/genética , Relógios Biológicos , Fatores de Transcrição , OsteoclastosAssuntos
Lipectomia , Procedimentos Cirúrgicos Otológicos , Humanos , Cânula , Adipócitos , Tecido AdiposoRESUMO
Resveratrol (RSV) is a natural extract that has been extensively studied for its significant anti-inflammatory and antioxidant effects, which are closely associated with a variety of injurious diseases and even cosmetic medicine. In this review, we have researched and summarized the role of resveratrol and its different forms of action in wound healing, exploring its role and mechanisms in promoting wound healing through different modes of action such as hydrogels, fibrous scaffolds and parallel ratio medical devices with their anti-inflammatory, antioxidant, antibacterial and anti-ageing properties and functions in various cells that may play a role in wound healing. This will provide a direction for further understanding of the mechanism of action of resveratrol in wound healing for future research.
Assuntos
Antioxidantes , Cicatrização , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Hidrogéis/farmacologia , Resveratrol/farmacologiaRESUMO
Objective: The aim of the study was to propose a signature based on genes associated with antigen processing and presentation (APscore) to predict prognosis and response to immune checkpoint inhibitors (ICIs) in advanced gastric cancer (aGC). Background: How antigen presentation-related genes affected the immunotherapy response and whether they could predict the clinical outcomes of the immune checkpoint inhibitor (ICI) in aGC remain largely unknown. Methods: In this study, an aGC cohort (Kim cohort, RNAseq, N=45) treated by ICIs, and 467 aGC patients from seven cohorts were conducted to investigate the value of the APscore predicting the prognosis and response to ICIs. Subsequently, the associations of the APscore with the tumor microenvironment (TME), molecular characteristics, clinical features, and somatic mutation variants in aGC were assessed. The area under the receiver operating characteristic curve (AUROC) of the APscore was analyzed to estimate response to ICIs. Cox regression or Log-rank test was used to estimate the prognosis of aGC patients. Results: The APscore constructed by principal component analysis algorithms was an effective predictive biomarker of the response to ICIs in the Kim cohort and 467 aGC patients (Kim: AUC =0.85, 95% CI: 0.69-1.00; 467 aGC: AUC =0.69, 95% CI: 0.63-0.74). The APscore also was a prognostic biomarker in 467 aGC patients (HR=1.73, 95% CI: 1.21-2.46). Inhibitory immunity, decreased TMB and low stromal scores were observed in the high APscore group, while activation of immunity, increased TMB, and high stromal scores were observed in the low APscore group. Next, we evaluated the value of several central genes in predicting the prognosis and response to ICIs in aGC patients, and verified them using immunogenic, transcriptomic, genomic, and multi-omics methods. Lastly, a predictive model built successfully discriminated patients with vs. without immunotherapy response and predicted the survival of aGC patients. Conclusions: The APscore was a new biomarker for identifying high-risk aGC patients and patients with responses to ICIs. Exploration of the APscore and hub genes in multi-omics GC data may guide treatment decisions.
Assuntos
Antineoplásicos Imunológicos , Neoplasias Gástricas , Humanos , Prognóstico , Apresentação de Antígeno , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Biomarcadores Tumorais/genética , Mutação , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente TumoralRESUMO
Disturbances or defects in the process of wound repair can disrupt the delicate balance of cells and molecules necessary for complete wound healing, thus leading to chronic wounds or fibrotic scars. Myofibroblasts are one of the most important cells involved in fibrotic scars, and reprogramming provides a potential avenue to increase myofibroblast clearance. Although myofibroblasts have long been recognized as terminally differentiated cells, recent studies have shown that myofibroblasts have the capacity to be reprogrammed into adipocytes. This review intends to summarize the potential of reprogramming myofibroblasts into adipocytes. We will discuss myofibroblast lineage tracing, as well as the known mechanisms underlying adipocyte regeneration from myofibroblasts. In addition, we investigated different changes in myofibroblast gene expression, transcriptional regulators, signalling pathways and epigenetic regulators during skin wound healing. In the future, myofibroblast reprogramming in wound healing will be better understood and appreciated, which may provide new ideas for the treatment of scarless wound healing.
Assuntos
Cicatriz , Miofibroblastos , Adipócitos/patologia , Diferenciação Celular , Cicatriz/patologia , Fibrose , Humanos , Miofibroblastos/patologia , CicatrizaçãoRESUMO
Bone morphogenetic protein (BMP) pathway is essential for M2 macrophage polarization and hair-follicle neogenesis. Icariin, a flavonoid derived from Epimedium, is a mediator of the BMP pathway. Here, we develop a hydrogel formulation functionalized with icariin for regulation of macrophage polarization to accelerate wound healing and hair-follicle neogenesis. Compared to skin defects without icariin treatment, those treated with icariin+PEG hydrogel healed faster and had new hair follicles. Results in vivo showed that icariin+PEG hydrogel induced a higher level of M2 phenotypic transformation of macrophages. Moreover, icariin+PEG hydrogel significantly accelerated wound-repair process by reducing the invasion of inflammation, excessive deposition of collagen, immoderate activation of myofibroblasts, and increasing the regeneration of hair follicles. Furthermore, studies in vitro demonstrated that the icariin+PEG hydrogel induced macrophages to polarize to the M2 phenotype and dermal papilla cell to hair follicles. Finally, molecular analysis demonstrated that the icariin+PEG hydrogel increased the expression of BMP4 and Smad1/5 phosphorylation in skin wounds. These results demonstrate the therapeutic potential of icariin-containing thermosensitive hydrogels for inducing M2 macrophage polarization to accelerate wound healing and promote hair-follicle neogenesis by regulating the BMP pathway.
RESUMO
Inflammation is one of the main pathological features leading to skin fibrosis and a key factor leading to the progression of skin fibrosis. Acidosis caused by a decrease in extracellular pH is a sign of the inflammatory process. Acid-sensing ion channels (ASICs) are ligand-gated ion channels on the cell membrane that sense the drop in extracellular pH. The molecular mechanisms by which skin fibroblasts are regulated by acid-sensing ion channel 3 (ASIC3) remain unknown. This study investigated whether ASIC3 is related to inflammation and skin fibrosis and explored the underlying mechanisms. We demonstrate that macrophage colony-stimulating factor (M-CSF) is a direct target of ASIC3, and ASIC3 activation promotes M-CSF transcriptional regulation of macrophages for M2 polarization. The polarization of M2 macrophages transduced by the ASIC3-M-CSF signal promotes the differentiation of fibroblasts into myofibroblasts through transforming growth factor ß1 (TGF-ß1), thereby producing an ASIC3-M-CSF-TGF-ß1 positive feedback loop. Targeting ASIC3 may be a new treatment strategy for skin fibrosis.
Assuntos
Miofibroblastos , Fator de Crescimento Transformador beta1 , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Diferenciação Celular/fisiologia , Retroalimentação , Fibroblastos/metabolismo , Fibrose , Humanos , Inflamação/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/metabolismo , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/metabolismoRESUMO
Wound healing is a complex and long-term process consisting of hemostasis, inflammation, proliferation, and maturation/remodeling. These four stages overlap and influence each other; they affect wound healing in different ways, and if they do not function perfectly, they may cause scarring, proliferative scarring and keloid formation. A therapeutic target affecting wound healing in multiple ways will help the healing process proceed more effectively. DPP-4/CD26 is a multifunctional dimorphic glycoprotein widely distributed on the surface of a variety of cells, including fibroblasts and keratin-forming cells. It has been found to affect periwound inflammation, re-epithelialization, extracellular matrix secretion and skin fibrosis and is a potential target for promoting wound healing and inhibiting scar formation. After presenting a brief introduction of the wound healing process and DPP-4/CD26, this paper summarizes the effects of DPP-4/CD26 on cells involved in different stages of wound healing and discusses the feasibility of DPP-4/CD26 as a multifunctional target for the treatment of wound healing and inhibition of scar formation.
Assuntos
Cicatriz , Dipeptidil Peptidase 4 , Cicatriz/patologia , Fibrose , Humanos , Inflamação/patologia , Pele , CicatrizaçãoRESUMO
Skin fibrosis is a common pathological feature of various diseases, and few treatment strategies are available because of the molecular pathogenesis is poorly understood. The urokinase-type plasminogen activator (uPA) system is the major serine protease system, and its components uPA, urokinase plasminogen activator receptor (uPAR) and plasminogen activator inhibitor-1(PAI-1) are widely upregulated in fibrotic diseases, including hypertrophic scars, keloids, and scleroderma. Here, we found that the successful binding of uPA and uPAR activates the downstream peroxisome proliferator-activated receptor (PPAR) signalling pathway to reduce the proliferation, migration, and contraction of disease-derived fibroblasts, contributing to the alleviation of skin fibrosis. However, increased or robust upregulation of the inhibitor PAI-1 inhibits these effects, suggesting of the involvement of PAI-1 in skin fibrosis. Subsequent in vivo studies showed that uPAR inhibitors increased skin fibrosis in mouse models, while uPA agonists and PAI-1 inhibitors reversed these effects. Our findings demonstrate a novel role for the uPA system and highlights its relationships with skin fibrosis, thereby suggesting new therapeutic approaches targeting the uPA system.
Assuntos
Inibidor 1 de Ativador de Plasminogênio , Ativador de Plasminogênio Tipo Uroquinase , Animais , Células Cultivadas , Fibroblastos/metabolismo , Fibrose , Camundongos , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismoRESUMO
Bone remodeling is a continuous process that maintains the homeostasis of the skeletal system, and it depends on the homeostasis between bone-forming osteoblasts and bone-absorbing osteoclasts. A large number of studies have confirmed that the Smad signaling pathway is essential for the regulation of osteoblastic and osteoclastic differentiation during skeletal development, bone formation and bone homeostasis, suggesting a close relationship between Smad signaling and bone remodeling. It is known that Smads proteins are pivotal intracellular effectors for the members of the transforming growth factor-ß (TGF-ß) and bone morphogenetic proteins (BMP), acting as transcription factors. Smad mediates the signal transduction in TGF-ß and BMP signaling pathway that affects both osteoblast and osteoclast functions, and therefore plays a critical role in the regulation of bone remodeling. Increasing studies have demonstrated that a number of Smad signaling regulators have potential functions in bone remodeling. Therefore, targeting Smad dependent TGF-ß and BMP signaling pathway might be a novel and promising therapeutic strategy against osteoporosis. This article aims to review recent advances in this field, summarizing the influence of Smad on osteoblast and osteoclast function, together with Smad signaling regulators in bone remodeling. This will facilitate the understanding of Smad signaling pathway in bone biology and shed new light on the modulation and potential treatment for osteoporosis.
RESUMO
The incidence of acute and chronic wound diseases is rising due to various reasons. With complicated pathogenesis, long course, difficult treatment and high disability, wound diseases have become a major burden for patients, their families, and society. Therefore, the focus of research is to identify new ideas and methods for treatment. Fat grafting has gained increased attention because of its effectiveness in wound treatment, and further analysis has uncovered that the stem cells derived from fat may be the main factor affecting wound healing. We summarize the function of adipose stem cells and analyze their possible mechanisms in tissue repair, helping to provide new ideas for the treatment of wound healing.