Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979013

RESUMO

Nanoparticle (NP) pharmacokinetics significantly differ from traditional small molecule principles. From this emerges the need to create new tools and concepts to harness their full potential and avoid unnecessary risks. Nanoparticle pharmacokinetics strongly depend on size, shape, surface functionalisation, and aggregation state, influencing their biodistribution, accumulation, transformations, and excretion profile, and hence their efficacy and safety. Today, while NP biodistribution and nanoceria biodistribution have been studied often at short times, their long-term accumulation and excretion have rarely been studied. In this work, 3 nm nanoceria at 5.7 mg/kg of body weight was intravenously administrated in a single dose to healthy mice. Biodistribution was measured in the liver, spleen, kidney, lung, brain, lymph nodes, ovary, bone marrow, urine, and faeces at different time points (1, 9, 30, and 100 days). Biodistribution and urinary and faecal excretion were also studied in rats placed in metabolic cages at shorter times. The similarity of results of different NPs in different models is shown as the heterogeneous nanoceria distribution in organs. After the expectable accumulation in the liver and spleen, the concentration of cerium decays exponentially, accounting for about a 50% excretion of cerium from the body in 100 days. Cerium ions, coming from NP dissolution, are most likely excreted via the urinary tract, and ceria nanoparticles accumulated in the liver are most likely excreted via the hepatobiliary route. In addition, nanoceria looks safe and does not damage the target organs. No weight loss or apathy was observed during the course of the experiments.

2.
J Hepatol ; 64(3): 691-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26519601

RESUMO

BACKGROUND & AIMS: Cerium oxide nanoparticles (CeO2NPs) have proven to behave as free radical scavengers and/or anti-inflammatory agents. The aim of the study was to determine whether CeO2NPs display hepatoprotective properties in experimental chronic liver disease. METHODS: Systemic and hepatic effects of nanoparticles were assessed in CCl4-treated rats receiving CeO2NPs or vehicle twice weekly for two weeks and CCl4 treatment was continued for 8 additional weeks. Thereafter, mean arterial pressure and portal pressure (PP) were assessed and serum samples obtained to measure standard hepatic and renal function tests. Organ and subcellular distribution of NPs were assessed using mass spectrometry (ICP-MS) and transmission electron microscopy. Liver samples were obtained to evaluate steatosis, α-SMA expression, macrophage infiltration, apoptosis and mRNA expression of oxidative stress, inflammatory or vasoactive related genes. RESULTS: Most CeO2NPs were located in the liver and it reduced hepatic steatosis, ameliorated systemic inflammatory biomarkers and improved PP without affecting mean arterial pressure. In addition, a marked reduction in mRNA expression of inflammatory cytokines (TNFα, IL1ß, COX-2, iNOS), ET-1 and messengers related to oxidative (Epx, Ncf1, Ncf2) or endoplasmic reticulum (Atf3, Hspa5) stress signaling pathways was observed in the liver of rats receiving CeO2NPs. This was associated with reduced macrophage infiltration and reduced abundance of caspase-3, α-SMA and inflammatory cytokines. CONCLUSIONS: CeO2NPs administration to CCl4-treated rats protects against chronic liver injury by reducing liver steatosis and portal hypertension and markedly attenuating the intensity of the inflammatory response, thereby suggesting that CeO2NPs may be of therapeutic value in chronic liver disease.


Assuntos
Anti-Inflamatórios/uso terapêutico , Cério/uso terapêutico , Fígado Gorduroso/tratamento farmacológico , Hipertensão Portal/tratamento farmacológico , Cirrose Hepática/tratamento farmacológico , Nanopartículas/administração & dosagem , Actinas/análise , Animais , Apoptose , Caspase 3/metabolismo , Cério/administração & dosagem , Cério/farmacologia , Estresse do Retículo Endoplasmático , Fígado/patologia , Ratos , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA