Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Membranes (Basel) ; 14(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38392659

RESUMO

Graphene oxide (GO) with its atomic thickness and abundant functional groups holds great potential in molecular-scale membrane separation. However, constructing high-speed and highly selective water transport channels within GO membranes remains a key challenge. Herein, sulfonato calix[n]arenes (SCn) molecules with a cavity structure, hydrophilic entrance, and hydrophobic wall were incorporated into GO interlayer channels through a layer-by-layer assembly approach to facilitate water permeation in a water/ethanol separation process. The hydrophilic entrance enables preferential access of water molecules to the cavity over ethanol molecules, while the high hydrophobicity of the cavity wall confers low resistance for water diffusion. After incorporating SCn molecules, the membrane shows a remarkable increase in the water/ethanol separation factor from 732 to 1260, while the permeate flux also increases by about 50%. In addition, the strong electrostatic interactions between the building blocks endow the membrane with excellent swelling resistance even under a high water content. This work provides an effective strategy of constructing high-efficiency water transport channels in membrane.

2.
Org Biomol Chem ; 22(6): 1213-1218, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38226967

RESUMO

An unprecedented one-pot route to achieve highly regioselective 1-sulfur-functionalized 2-nitrogen-functionalized alkenes and 2-thiocyanate indolines from unsymmetrical ynamides (readily and generally available amides) using the commercially available inexpensive iodobenzene diacetate (PIDA) as the oxidant and potassium thiocyanate (KSCN) as the thiocyanate (SCN) source has been developed. The interconversion of thiocyanate (SCN) and isothiocyanate (NCS) groups simultaneously forms C-N and C-S bonds in this metal-free approach, while introducing important functional groups into homemade alkynes. A radical-chain mechanism, involving competing kinetically controlled chain transfer at the S atom and sterically-controlled chain transfer at the N atom of the thiocyanogen molecule in this mild approach, is proposed.

3.
Membranes (Basel) ; 12(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363616

RESUMO

Metal-organic frameworks (MOFs) are regarded as the next-generation, disruptive membrane materials, yet the straightforward fabrication of ultrathin MOF membranes on an unmodified porous support remains a critical challenge. In this work, we proposed a facile, one-step electrophoretic deposition (EPD) method for the growth of ultrathin zeolitic imidazole framework-8 (ZIF-8) membranes on a bare porous support. The crystallinity, morphology and coverage of ZIF-8 particles on support surface can be optimized via regulating EPD parameters, yet it is still difficult to ensure the integrity of a ZIF-8 membrane with the constant voltage mode. In contrast, the constant current mode is more beneficial to the growth of a defect-free ZIF-8 membrane due to the steady migration rate of colloid particles toward the electrode. With a current of 0.65 mA/cm2 and deposition time of 60 min, a 300 nm thick ZIF-8 membrane was obtained, which exhibits a CO2 permeance of 334 GPU and a CO2/CH4 separation factor of 8.8, evidencing the defect-free structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA