RESUMO
Repositioning approved antitumor drugs for different cancers is a cost-effective approach. Gilteritinib was FDA-approved for the treatment of FLT3-mutated acute myeloid leukemia in 2018. However, the therapeutic effects and mechanism of Gilteritinib on other malignancies remain to be defined. In this study, we identified that gilteritinib has an inhibitory effect on lung cancer cells (LCCs) without FLT3 mutation in vitro and in vivo. Unexpectedly, we found that gilteritinib induces cholesterol accumulation in LCCs via upregulating cholesterol biosynthetic genes and inhibiting cholesterol efflux. This gilteritinib-induced cholesterol accumulation not only attenuates the antitumor effect of gilteritinib but also induces gilteritinib-resistance in LCCs. However, when cholesterol synthesis was prevented by squalene epoxidase (SQLE) inhibitor NB-598, both LCCs and gilteritinib-resistant LCCs became sensitive to gilteritinib. More importantly, the natural cholesterol inhibitor 25-hydroxycholesterol (25HC) can suppress cholesterol biosynthesis and increase cholesterol efflux in LCCs. Consequently, 25HC treatment significantly increases the cytotoxicity of gilteritinib on LCCs, which can be rescued by the addition of exogenous cholesterol. In a xenograft model, the combination of gilteritinib and 25HC showed significantly better efficacy than either monotherapy in suppressing lung cancer growth, without obvious general toxicity. Thus, our findings identify an increase in cholesterol induced by gilteritinib as a mechanism for LCC survival, and highlight the potential of combining gilteritinib with cholesterol-lowering drugs to treat lung cancer.
Assuntos
Compostos de Anilina , Colesterol , Neoplasias Pulmonares , Éteres Fenílicos , Pirazinas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Colesterol/metabolismo , Colesterol/biossíntese , Animais , Pirazinas/farmacologia , Linhagem Celular Tumoral , Camundongos , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Éteres Fenílicos/farmacologia , Éteres Fenílicos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , FemininoRESUMO
Circular RNAs (circRNAs) are covalently closed, single-stranded RNAs that play critical roles in various biological processes and diseases, including cancers. However, the functions and mechanisms of circRNAs in hepatocellular carcinoma (HCC) need further clarification. Here, we identified and confirmed that circATF6 is downregulated in HCC tissues and negatively associated with the overall survival of HCC patients. Ectopic overexpression of circATF6 inhibits malignant phenotypes of HCC cells in vitro and in vivo, while knockdown of circATF6 had opposite effects. Mechanistically, we found that circATF6 bound to calreticulin (CALR) protein and acted as a scaffold to enhance the interaction of CALR with calpain2 (CAPN2), which promoted the degradation of CALR by its enzymatic activity. Moreover, we found that circATF6 inhibited HCC cells by suppressing CALR-mediated wnt/ß-catenin signaling pathway. Taken together, our findings suggest that circATF6 is a potential prognostic biomarker and therapeutic target for HCC.
Assuntos
Calreticulina , Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Circular , Via de Sinalização Wnt , Animais , Humanos , Masculino , Camundongos , Fator 6 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/genética , beta Catenina/metabolismo , Calpaína/metabolismo , Calpaína/genética , Calreticulina/metabolismo , Calreticulina/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Circular/genética , RNA Circular/metabolismoRESUMO
The majority of rod-shaped and some filamentous plant viruses encode a cysteine-rich protein (CRP) that functions in viral virulence; however, the roles of these CRPs in viral infection remain largely unknown. Here, we used barley stripe mosaic virus (BSMV) as a model to investigate the essential role of its CRP in virus morphogenesis. The CRP protein γb directly interacts with BSMV coat protein (CP), the mutations either on the His-85 site in γb predicted to generate a potential CCCH motif or on the His-13 site in CP exposed to the surface of the virions abolish the zinc-binding activity and their interaction. Immunogold-labeling assays show that γb binds to the surface of rod-shaped BSMV virions in a Zn2+-dependent manner, which enhances the RNA binding activity of CP and facilitates virion assembly and stability, suggesting that the Zn2+-dependent physical association of γb with the virion is crucial for BSMV morphogenesis. Intriguingly, the tightly binding of diverse CRPs to their rod-shaped virions is a general feature employed by the members in the families Virgaviridae (excluding the genus Tobamovirus) and Benyviridae. Together, these results reveal a hitherto unknown role of CRPs in the assembly and stability of virus particles, and expand our understanding of the molecular mechanism underlying virus morphogenesis.
Assuntos
Vírion , Zinco , Zinco/metabolismo , Vírion/metabolismo , Proteínas do Capsídeo/metabolismo , Montagem de Vírus/fisiologia , Vírus de Plantas/metabolismo , Vírus de Plantas/fisiologia , Doenças das Plantas/virologia , Cisteína/metabolismo , Proteínas Virais/metabolismo , MorfogêneseRESUMO
OBJECTIVE: To explore the clinical features and prognosis of patients with primary central nervous system lymphomaï¼PCNSLï¼. METHODS: A retrospective analysis was performed on the relationship between clinical features, treatment regimen and prognosis in 46 newly diagnosed patients with primary central nervous system lymphoma who were diagnosed and treated in The Second Hospital of Lanzhou University from January 2015 to September 2022. Fisher's exact probability method was used to analyze the differences in clinical data of different subgroups. Kaplan-Meier survival curve was used to analyze the overall survival rate and progression-free survival rate of patients with different treatments, and the factors influencing survival were analyzed. RESULTS: Among 46 patients with PCNSL, which pathological type were diffuse large B-cell lymphomaï¼DLBCLï¼. There were 26(56.5%) cases of male and 20(43.5%) of female, with a median age of 54(17-71) years. In Hans subtypes, 14 cases (30.4%) of GCB subtype, 32 cases (69.6%) of non-GCB subtype. 32 cases (69.6%) of Ki-67≥80%. Among 36 patients who completed at least 2 cycles of treatment with follow-up data, the efficacy evaluation was as follows: overall response rate(ORR) was 63.9%, complete response(CR) rate was 47.2%, 17 cases of CR, 6 cases of PR. The 1-year progression-free survival rate and 1-year overall survival rate was 73.6% and 84.9%, respectively. The 2-year progression-free survival rate and 2-year overall survival rate was 52.2% and 68.9%, respectively. The ORR and CR rate of 17 patients treated with RMT regimen was 76.5% and 52.9% (9 cases CR and 4 cases PR), respectively. Univariate analysis of 3 groups of patients treated with RMT regimen, RM-BTKi regimen, and RM-TT regimen as first-line treament showed that deep brain infiltration was associated with adverse PFS(P =0.032), and treatment regimen was associated with adverse OS in PCNSL patientsï¼P =0.025ï¼. CONCLUSION: Different treatment modalities were independent prognosis predictors for OS, the deep brain infiltration of PCNSL is a poor predictive factor for PFS. Patients with relapse/refractory (R/R) PCNSL have a longer overall survival time because to the novel medication BTKi. They have strong toleration and therapeutic potential as a first-line therapy for high-risk patients.
Assuntos
Neoplasias do Sistema Nervoso Central , Linfoma Difuso de Grandes Células B , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias do Sistema Nervoso Central/terapia , Estudos Retrospectivos , Prognóstico , Idoso , Adulto , Linfoma Difuso de Grandes Células B/terapia , Linfoma Difuso de Grandes Células B/diagnóstico , Adolescente , Taxa de Sobrevida , Adulto Jovem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Estimativa de Kaplan-MeierRESUMO
Sediment re-suspension plays a crucial role in releasing endogenous nitrogen and greenhouse gases in shallow urban waters. However, the impacts of repeated re-suspension and photo-induced processes on migration and transformation from endogenous nitrogen, as well as the emission of greenhouse gases, remain unclear. This study simulated three conditions: re-suspension (Rs), re-suspension combined with ultravioletirradiation (Rs + UV), and ultraviolet irradiation (UV). The findings revealed that both repeated sediment re-suspension and exposure to UV light altered the characteristics of surface sediments. Decrease of convertible nitrogen in sediments, leading to the release of ion-exchangeable nitrogen (IEF-N) into NH4+-N and NO3--N, influenced greenhouse gas production differently under various conditions. The study observed the highest concentration of dissolved N2O in under UV irradiation, positively correlated with NO2--N and NO3--N. Re-suspension increased the turbidity of the overlying water and accelerated nitrification, resulting in the highest NO3--N concentration and the lowest dissolved N2O concentration. Additionally, in the Rs + UV dissolved N2O maintained the higher concentrations than in Rs, with greatest amount of N conversion in surface sediments, and a 59.45% reduction in IEF-N. The production of N2O during re-suspension was mainly positively correlated with NH4+-N in the overlying water. Therefore, this study suggest that repeated re-suspension and light exposure significantly influence nitrogen migration and transformation processes in sediment, providing a theoretical explanation for the eutrophication of water and greenhouse gas emissions.
Assuntos
Nitrogênio , Nitrogênio/análise , Raios Ultravioleta , Poluentes Químicos da Água/análiseRESUMO
Recent studies show that greenhouse gas (GHG) emissions from urban landscape water are significant and cannot be overlooked, underscoring the need to develop effective strategies for mitigating GHG production from global freshwater systems. Calcium peroxide (CaO2) is commonly used as an eco-friendly reagent for controlling eutrophication in water bodies, but whether CaO2 can reduce GHG emissions remains unclear. This study investigated the effects of CaO2 dosage on the production of methane (CH4) and nitrous oxide (N2O) in urban landscape water under anoxic conditions during summer. The findings reveal that CaO2 addition not only improved the physicochemical and organoleptic properties of simulated urban landscape water but also reduced N2O production by inhibiting the activity of denitrifying bacteria across various dosages. Moreover, CaO2 exhibited selective effects on methanogens. Specifically, the abundance of acetoclastic methanogen Methanosaeta and methylotrophic methanogen Candidatus_Methanofastidiosum increased whereas the abundance of the hydrogenotrophic methanogen Methanoregula decreased at low, medium, and high dosages, leading to higher CH4 production at increased CaO2 dosage. A comprehensive multi-objective evaluation indicated that an optimal dosage of 60 g CaO2/m2 achieved 41.21 % and 84.40 % reductions in CH4 and N2O production, respectively, over a 50-day period compared to the control. This paper not only introduces a novel approach for controlling the production of GHGs, such as CH4 and N2O, from urban landscape water but also suggests a methodology for optimizing CaO2 dosage, providing valuable insights for its practical application.
Assuntos
Metano , Óxido Nitroso , Peróxidos , Qualidade da Água , Metano/análise , Óxido Nitroso/análise , Peróxidos/análise , Poluentes Químicos da Água/análise , Gases de Efeito Estufa/análiseRESUMO
Increased leptin resistance and methylglyoxal (MG) levels are observed in obese patients. However, whether MG deposits contribute to leptin resistance, oxidative stress, and inflammation in peripheral tissues remains unclear. In addition, the edible fruit of Indian gooseberry (Phyllanthus emblica L.) contains abundant bioactive components such as vitamin C, ß-glucogallin (ß-glu), gallic acid (GA), and ellagic acid (EA). Water extract of Indian gooseberry fruit (WEIG) and GA has been shown to improve cognitive decline by suppressing brain MG-induced insulin resistance in rats administered a high-fat diet (HFD). Accordingly, this study investigated the functions of WEIG and GA in inhibiting MG-induced leptin resistance, oxidative stress, and inflammation in the peripheral tissues of HFD-fed rats. The results showed that MG, advanced glycation end products (AGEs), and leptin resistance accumulation in the liver, kidney, and perinephric fat were effectively restored by elevated glyoxalase-1 (Glo-1) activity after WEIG and GA administration comparable to that of alagebrium chloride (positive control) treatment in HFD-fed rats. Furthermore, WEIG and GA supplementation increased adiponectin and antioxidant enzymes (glutathione peroxidase, superoxide dismutase, catalase) and decreased inflammatory cytokines (IL-6, IL-1ß, TNF-α) in the peripheral tissues of HFD-fed rats. In conclusion, these findings demonstrated that MG may trigger leptin resistance, oxidative stress, and inflammation in peripheral tissues, which could be abolished by WEIG and GA treatment. These results show the potential of P. emblica for functional food development and improving obesity-associated metabolic disorders.
Assuntos
Phyllanthus emblica , Ribes , Humanos , Animais , Ratos , Leptina , Dieta Hiperlipídica/efeitos adversos , Aldeído Pirúvico , Ácido Gálico , InflamaçãoRESUMO
To explore the feasibility of biofilter reactor to treat municipal secondary effluent deeply without extra carbon source, this paper proposed an integrated biofilter reactor (IBFR) coupling partial denitrification (PD) with anammox (A) to treat the secondary effluent and raw sewage with the flow ratio of 3:1 together. The results show that the effluent concentration of TN and COD in IBFR could be reduced to 10 mg/L and 15 mg/L, respectively, under hydraulic retention time of 1.5 h and nitrogen loading rate of 0.55 kg/(m3·d). The highest specific anammox activity (19.2 mg N/(g TVS·d)) and the maximum extracellular polymeric substance (EPS) content (107.21 mg/g TVS) occurred at the 25-50 cm section of IBFR, where Thauera, Candidatus Anammoximicrobium and Candidatus Brocadia were the dominant denitrifiers and anammox bacteria. Furthermore, the cyclic self-stratification occurred along the reactor height, where the utilization, decomposition, transformation and cross-feeding of EPS enhanced the performance stability of nitrogen and carbon removal, strengthened the niche structure and promoted the synergistic symbiosis. In conclusion, IBFR coupling PD and A demonstrated the possibility to treat secondary effluent without additional carbon sources, which is expected as an alternative approach for tertiary treatment of municipal wastewater.
Assuntos
Desnitrificação , Águas Residuárias , Matriz Extracelular de Substâncias Poliméricas , Reatores Biológicos , Oxirredução , Esgotos , Nitrogênio , CarbonoRESUMO
To address electromagnetic interference (EMI) pollution in modern society, the development of ultrathin, high-performance, and highly stable EMI shielding materials is highly desired. Liquid metal (LM) based conductive materials have received enormous amounts of attention. However, the processing approach of LM/polymer composites represents great challenges due to the high surface tension and cohesive energy of LMs. In this study, we develop a universal one-step fabrication strategy to directly process composites containing LMs and cellulose nanofibrils (CNFs) and successfully fabricate the ultrathin, flexible, and stable EMI shielding films with an average specific EMI shielding efficiency (EMI SE) value of 429 dB/mm and small thickness of only 70 µm in the wide frequency range of 8.2-18 GHz. In addition, the resulting films also exhibit excellent mechanical performance and flexibility, which endow the film with the ability to withstand repeated folding, bending, and folding into complex shapes without producing cracks or fractures. Besides, the resulting films display excellent thermal conductivity with a λ of 4.90 W/(m K) and an α of 3.17 mm2/s. Thus, the presented approach shows great potential in fabricating advanced materials for EMI shielding applications.
RESUMO
Trisiloxane ethoxylates (TSEOn) are widely used as agricultural surfactants due to their significant synergism with the active ingredients of pesticides, generally, including three typical end groups which are hydroxyl (TSEOn-H), methoxy (TSEOn-CH3), and acetoxy (TSEOn-COCH3), respectively. However, the potential ecotoxicological and endocrine-disrupting risks of TSEOn congeners have recently attracted ever-growing concern. Above all, there is limited research on the concentration levels of TSEOn in agroecosystems. This study, simultaneous analysis of 39 TSEOn oligomers in citrus orchard soils in China was implemented by the modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The method detection limits (MDLs) and the method quantification limits (MQLs) for TSEOn were 0.003-0.07 µg/kg and 0.01-0.20 µg/kg, respectively. The recoveries for TSEOn oligomers in soils ranged from 81 % â¼ 106 % with related standard deviations (RSDs) < 7 %. This newly developed UPLC-MS/MS method with high sensitivity and stability allows us to successfully trace the occurrence of TSEOn congeners in the citrus orchard soils from 3 provinces and 1 municipality in China. The detected concentrations of TSEOn-H oligomers in the sampled soils ranged from 0.02 to 0.288 µg/kg (dry weight). The congener profiles of TSEOn-H were dominated by TSEOn-H (n = 6- 8) in the soils. Additionally, the total concentrations of TSEOn-H congeners (ΣTSEOn-H) in the soils were in the range of 0.03 to 1.49 µg/kg. A comparison of ΣTSEOn-H distribution among the different citrus orchard soils indicated a higher level of ΣTSEOn-H in the soil samples collected from Zhejiang Province. Notably, TSEOn-CH3 or TSEOn-COCH3 oligomers were not detected in the tested soils. To the best of our knowledge, this is the first report on the occurrence and distribution of TSEOn congeners in agricultural soils.
Assuntos
Citrus , Siloxanas , Solo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Extração em Fase SólidaRESUMO
Increasing evidence showed that imidacloprid affects plants' abiotic or biotic stress tolerance. However, the effects of imidacloprid on the quality of fruits remain elusive. This work aimed to study the effects of imidacloprid applied at different growth stages on the edible quality and phenolic profile of strawberry fruit in the field experiment. For the first time, lower fruit quality was observed in the mature strawberry fruits after imidacloprid treatment at the fruit-bearing completion stage (five days after pollination). Compared to the control group, the mature strawberry fruit wights and the SCC/TA ratio declined about 18.2-30.0 % and 10.3-16.8 %, respectively. However, those attributes did not occur in the mature strawberry fruits by imidacloprid treatment at the fruit maturation stage (30 days after pollination). Among the 30 phenolic compounds, nine presented significant up-regulation or down-regulation after imidacloprid application at two different growth stages, suggesting that the application period played an essential role in evaluating the effects of imidacloprid on the quality of fruits. A significant effect on fruit quality was presented at the strawberry early growth stage treated by imidacloprid. This study provided a new insight into how and when imidacloprid affects the quality of strawberry fruits, contributing to the future's more scientific application of imidacloprid on strawberries.
Assuntos
Fragaria , Nitrocompostos , Frutas/química , Fenóis/análise , NeonicotinoidesRESUMO
The androgen receptor (AR) plays an important role in male-dominant hepatocellular carcinoma, and specific acquired somatic mutations of AR have been observed in HCC patients. Our previous research have established the role of AR wild type as one of the key oncogenes in hepatocarcinogenesis. However, the role of hepatic acquired somatic mutations of AR remains unknown. In this study, we identify two crucial acquired somatic mutations, Q62L and E81Q, situated close to the N-terminal activation function domain-1 of AR. These mutations lead to constitutive activation of AR, both independently and synergistically with androgens, making them potent driver oncogene mutations. Mechanistically, these N-terminal AR somatic mutations enhance de novo lipogenesis by activating sterol regulatory element-binding protein-1 and promote glycogen accumulation through glycogen phosphorylase, brain form, thereby disrupting the AMPK pathway and contributing to tumorigenesis. Moreover, the AR mutations show sensitivity to the AMPK activator A769662. Overall, this study establishes the role of these N- terminal hepatic mutations of AR as highly malignant oncogenic drivers in hepatocarcinogenesis and highlights their potential as therapeutic targets for patients harboring these somatic mutations.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores Androgênicos , Humanos , Masculino , Proteínas Quinases Ativadas por AMP , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Mutação , Receptores Androgênicos/genéticaRESUMO
Despite the potential of nanozymes combined with sensor arrays for discriminating multiple pesticides simultaneously, they have few practical pesticide sensing uses due to the limited performance of existing nanozymes and the complexity of their preparation. Here, agricultural waste is utilized for the facile synthesis of high-performance biochar nanozymes and the fabrication of biochar nanozyme sensor arrays. The production of autogenous N-doped biochars with abundant surface functional groups and good peroxidase-like activities is achieved with different types of algae. High-performance biochar nanozyme sensor arrays can discriminate pesticides in a concentration range from 1 to 500 µM and in real samples from soil, lake water, seawater, apples, cucumbers, peaches, tomatoes and cabbages. Furthermore, pesticides can be quantified down to 1 µM. The development of high-performance nanozyme sensor arrays based on waste conversion could be a step toward pesticide discrimination and detection, which would improve human and environmental safety.
Assuntos
Praguicidas , Humanos , Praguicidas/análise , Solo , Água , Carvão Vegetal , ColorimetriaRESUMO
Image resolution is paramount when contouring complex anatomy, as in head and neck planning. It is notable that when diagnostic radiologists perform a computed tomography scan of the neck, they always use a small field of view because it gives the best image resolution. When planning for radiation treatment, however, it is also necessary to have a large field of view to provide a comprehensive external contour that allows for radiation dose calculation. We present a simple method to obtain both small and large fields of view at the time of computed tomography simulation.
Assuntos
Neoplasias de Cabeça e Pescoço , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem RadioterapêuticaRESUMO
Hidden ingredients in plant protection products (PPPs) threaten public health, food trade, and the environment. In this study, we developed a high-throughput screening method of 639 hidden ingredients in PPPs using GC-MS/MS in multiple reaction monitoring mode. Results showed that the qualitative criteria of retention time (tR) shift and uncertainty of qualifier to quantifier ratio in the commercially available Shimadzu Smart Pesticides Database were set at < 0.17 min and < 30%, respectively, which could be used to tentatively identify compounds without standards. The limits of quantification were 0.01-0.05 mg/kg. A wide linear range of 10-1000 µg/L was observed with R2 ≥ 0.975. Recoveries from three types of PPP formulations were 62.08%- 126.3%, with relative standard deviations < 15.7%. Finally, this method was applied to screen and quantify hidden ingredients in 91 plant protection products (PPPs) samples collected from online sales in China. Only one hidden ingredient, dimethomorph (1.6 g/kg), was detected in the polyoxin formulation (15% wettable powder). The results will be helpful in assessing the potential risks of hidden ingredients in PPPs.
Assuntos
Praguicidas , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ensaios de Triagem em Larga Escala , Praguicidas/análise , Padrões de ReferênciaRESUMO
OBJECTIVE: The objective of this study is to explore the relationship between family communication, family violence, problematic internet use, anxiety, and depression and validate their potential mediating role. METHODS: The study population consisted of Chinese adolescents aged 12 to 18 years, and a cross-sectional survey was conducted in 2022. Structural equation models were constructed using AMOS 25.0 software to examine the factors that influence adolescent anxiety and depression and the mediating effects of problematic internet use and family violence. RESULTS: The results indicate that family communication was significantly and negatively related to family violence (ß = -.494, p < 0.001), problematic internet use (ß = -.056, p < .05), depression (ß = -.076, p < .01), and anxiety (ß = -.071, p < .05). And the finds also indicate that family violence mediated the relationships between family communication and depression (ß = -.143, CI: -.198 -.080), and between family communication and anxiety (ß = -.141; CI: -.198 -.074). Chain indirect effects between family communication and depression (ß = -.051; CI: -.081 -.030) or anxiety (ß = -.046; CI: -.080 -.043) via family violence and then through problematic internet use were also found in the present study. CONCLUSIONS: In conclusion, positive family communication is crucial in reducing anxiety and depression in adolescents. Moreover, problematic internet use and family violence mediate the effects of positive family communication on anxiety and depression. Therefore, improving family communication and promoting interventions aimed at reducing family violence and problematic internet use can help reduce anxiety and depression in adolescents, thus promoting their healthy development.
Assuntos
Depressão , Uso da Internet , Adolescente , Humanos , Estudos Transversais , Depressão/epidemiologia , Ansiedade/epidemiologia , ComunicaçãoRESUMO
Advancements in understanding the pathogenesis mechanisms underlying gastrointestinal diseases, encompassing inflammatory bowel disease, gastrointestinal cancer, and gastroesophageal reflux disease, have led to the identification of numerous novel therapeutic targets. These discoveries have opened up exciting possibilities for developing gene therapy strategies to treat gastrointestinal diseases. These strategies include gene replacement, gene enhancement, gene overexpression, gene function blocking, and transgenic somatic cell transplantation. In this review, we introduce the important gene therapy targets and targeted delivery systems within the field of gastroenterology. Furthermore, we provide a comprehensive overview of recent progress in gene therapy related to gastrointestinal disorders and shed light on the application of innovative gene-editing technologies in treating these conditions. These developments are fueling a revolution in the management of gastrointestinal diseases. Ultimately, we discuss the current challenges (particularly regarding safety, oral efficacy, and cost) and explore potential future directions for implementing gene therapy in the clinical settings for gastrointestinal diseases.
RESUMO
Organic agriculture is of great socioeconomic significance because it can promote the nutritional quality of horticultural crops and is environmentally friendly. However, owing to the lack of techniques for studying complex aroma-related chemical profiles, limited information is available on the influence of organic practices on the flavor quality of strawberries, one of the primary factors driving consumer preferences. Here, two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOF-MS) and flavoromics analysis was employed to investigate the profiles and differences in the volatile organic compounds (VOCs) of strawberries under organic (without imidacloprid) and conventional (with imidacloprid) agricultural practices. A total of 1164 VOCs, representing 23 chemical classes (e.g., aldehydes, terpenes, and furanone compounds), were detected, which is the highest number of VOCs that have ever been detected in strawberries. The sensory evaluation results indicated that there was a notable influence of imidacloprid (IMI) on the aroma of the strawberries. Principal component analysis and partial least squares discriminant analysis results suggested that the composition of volatile compounds significantly differed in the present study between the IMI-treated and non-IMI-treated groups. Furthermore, the flavor-related indicators of 25 key contributors to the differences between the two treatment groups suggested that VOC profiles can be considered an indicator for distinguishing between strawberries from different agricultural practices. Flavoromics can provide new insights into the quality of strawberries from different agricultural practices.
RESUMO
Inflammatory bowel disease (IBD) encompasses a collection of idiopathic diseases characterized by chronic inflammation in the gastrointestinal (GI) tract. Patients diagnosed with IBD often experience necessitate long-term pharmacological interventions. Among the multitude of administration routes available for treating IBD, oral administration has gained significant popularity owing to its convenience and widespread utilization. In recent years, there has been extensive evaluation of the efficacy of orally administered herbal medicinal products and their extracts as a means of treating IBD. Consequently, substantial evidence has emerged, supporting their effectiveness in IBD treatment. This review aimed to provide a comprehensive summary of recent studies evaluating the effects of herbal medicinal products in the treatment of IBD. We delved into the regulatory role of these products in modulating immunity and maintaining the integrity of the intestinal epithelial barrier. Additionally, we examined their impact on antioxidant activity, anti-inflammatory properties, and the modulation of intestinal flora. By exploring these aspects, we aimed to emphasize the significant advantages associated with the use of oral herbal medicinal products in the treatment of IBD. Of particular note, this review introduced the concept of herbal plant-derived exosome-like nanoparticles (PDENs) as the active ingredient in herbal medicinal products for the treatment of IBD. The inclusion of PDENs offers distinct advantages, including enhanced tissue penetration and improved physical and chemical stability. These unique attributes not only demonstrate the potential of PDENs but also pave the way for the modernization of herbal medicinal products in IBD treatment.