Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Chem ; 67(5): 3358-3384, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38413367

RESUMO

A series of structurally novel GluN2B NMDAR antagonists were designed, synthesized, and biologically evaluated as anti-stroke therapeutics by optimizing the chemical structure of Pierardine, the active ingredient of traditional Chinese medicine Dendrobium aphyllum (Roxb.) C. E. Fischer identified via in silico screening. The systematic structure-activity relationship study led to the discovery of 58 with promising NMDAR-GluN2B binding affinity and antagonistic activity. Of the two enantiomers, S-58 exhibited significant inhibition (IC50 = 74.01 ± 12.03 nM) against a GluN1/GluN2B receptor-mediated current in a patch clamp assay. In addition, it displayed favorable specificity over other subtypes and off-target receptors. In vivo, S-58 exerted therapeutic efficacy comparable to that of the approved GluN2B NMDAR antagonist ifenprodil and excellent safety profiles. In addition to the attractive in vitro and in vivo potency, S-58 exhibited excellent brain exposure. In light of these merits, S-58 has been advanced to further preclinical investigation as a potential anti-stroke candidate.


Assuntos
AVC Isquêmico , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Encéfalo/metabolismo , Relação Estrutura-Atividade
2.
Am J Physiol Gastrointest Liver Physiol ; 325(5): G418-G428, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37668531

RESUMO

Mediator subunit mediator 1 (MED1) mediates ligand-dependent binding of the mediator coactivator complex to various nuclear receptors and plays a critical role in embryonic development, lipid and glucose metabolism, liver regeneration, and tumorigenesis. However, the precise role of MED1 in the development of liver fibrosis has been unclear. Here, we showed that MED1 expression was increased in livers from nonalcoholic steatohepatitis (NASH) patients and mice and positively correlated with transforming growth factor ß (TGF-ß) signaling and profibrotic factors. Upon treatment with carbon tetrachloride (CCl4), hepatic fibrosis was much less in liver-specific MED1 deletion (MED1ΔLiv) mice than in MED1fl/fl littermates. TGF-ß/Smad2/3 signaling pathway was inhibited, and gene expression of fibrotic markers, including α-smooth muscle actin (α-SMA), collagen type 1 α 1 (Col1a1), matrix metalloproteinase-2 (Mmp2), and metallopeptidase inhibitor 1 (Timp1) were decreased in livers of MED1ΔLiv mice with CCl4 injection. Transcriptomic analysis revealed that the differentially expressed genes in livers of CCl4-administered MED1ΔLiv mice were enriched in the pathway of oxidoreductase activity, followed by robustly reduced oxidoreductase activity-related genes, such as Gm4756, Txnrd3, and Etfbkmt. More importantly, we found that the reduction of reactive oxygen species (ROS) in MED1 knockdown hepatocytes blocked the activation of TGF-ß/Smad2/3 pathway and the expression of fibrotic genes in LX2 cells. These results indicate that MED1 is a positive regulator for hepatic fibrogenesis, and MED1 may be considered as a potential therapeutic target for the regression of liver fibrosis.NEW & NOTEWORTHY In this study, we present the first evidence that liver mediator 1 (MED1) deficiency attenuated carbon tetrachloride-induced hepatic fibrosis in mouse. The underlying mechanism is that MED1 deficiency reduces reactive oxygen species (ROS) production in hepatocytes, thus restricts the activation of TGF-ß/Smad2/3 signaling pathway and fibrogenic genes expression in hepatic stellate cells (HSCs). These data suggest that MED1 is an essential regulator for hepatic fibrogenesis, and MED1 may be considered as a potential therapeutic target for liver fibrosis.


Assuntos
Tetracloreto de Carbono , Metaloproteinase 2 da Matriz , Animais , Humanos , Camundongos , Tetracloreto de Carbono/metabolismo , Fibrose , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/prevenção & controle , Metaloproteinase 2 da Matriz/metabolismo , Subunidade 1 do Complexo Mediador/metabolismo , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
3.
ACS Omega ; 6(12): 8616-8624, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33817522

RESUMO

A new fluorescent probe LXY based on the rhodamine 6G platforms has been designed, synthesized, and characterized, which could recognize Fe3+ effectively in HEPES buffer (10 mM, pH = 7.4)/CH3CN (2:3, v/v). And the distinct color change and the rapid emergence of fluorescence emission at 550 nm achieved "naked eye" detection of Fe3+. The interaction mode between them was achieved by Job's plot, MS, SEM, and X-ray single-crystal diffraction. Importantly, the crystal structures proved that Fe3+ could induce the rhodamine moiety transform the closed-cycle form to the open-cycle form. But it is interesting that Fe3+ did not appear in the crystal structures. Meanwhile, the limit of detection (LOD) of LXY to Fe3+ was calculated to be 3.47 × 10-9. In addition, the RGB experiment, test papers, and silica gel plates all indicated that the probe LXY could be used to distinguish Fe3+ quantitatively and qualitatively on-site. Moreover, the probe LXY has also been successfully applied to Fe3+ image in Caenorhabditis elegans, adult mice, and plant tissues. Thus, LXY was considered to have some potential for application in bioimaging.

4.
Mol Ecol Resour ; 21(4): 1243-1255, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33421343

RESUMO

Chinese mahogany (Toona sinensis) is a woody plant that is widely cultivated in China and Malaysia. Toona sinensis is important economically, including as a nutritious food source, as material for traditional Chinese medicine and as a high-quality hardwood. However, the absence of a reference genome has hindered in-depth molecular and evolutionary studies of this plant. In this study, we report a high-quality T. sinensis genome assembly, with scaffolds anchored to 28 chromosomes and a total assembled length of 596 Mb (contig N50 = 1.5 Mb and scaffold N50 = 21.5 Mb). A total of 34,345 genes were predicted in the genome after homology-based and de novo annotation analyses. Evolutionary analysis showed that the genomes of T. sinensis and Populus trichocarpa diverged ~99.1-103.1 million years ago, and the T. sinensis genome underwent a recent genome-wide duplication event at ~7.8 million years and one more ancient whole genome duplication event at ~71.5 million years. These results provide a high-quality chromosome-level reference genome for T. sinensis and confirm its evolutionary position at the genomic level. Such information will offer genomic resources to study the molecular mechanism of terpenoid biosynthesis and the formation of flavour compounds, which will further facilitate its molecular breeding. As the first chromosome-level genome assembled in the family Meliaceae, it will provide unique insights into the evolution of members of the Meliaceae.


Assuntos
Genoma de Planta , Meliaceae , Toona , China , Cromossomos de Plantas , Malásia , Filogenia , Toona/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA