Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 352: 120083, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38237331

RESUMO

Modeling and predicting forest landscape dynamics are crucial for forest management and policy making, especially under the context of climate change and increased severities of disturbances. As forest landscapes change rapidly due to a variety of anthropogenic and natural factors, accurately and efficiently predicting forest dynamics requires the collaboration and synthesis of domain knowledge and experience from geographically dispersed experts. Owing to advanced web techniques, such collaboration can now be achieved to a certain extent, for example, discussion about modeling methods, consultation for model use, and surveying for stakeholders' feedback can be conducted on the web. However, a research gap remains in terms of how to facilitate online joint actions in the core task of forest landscape modeling by overcoming the challenges from decentralized and heterogeneous data, offline model computation modes, complex simulation scenarios, and exploratory modeling processes. Therefore, we propose an online collaborative strategy to enable collaborative forest landscape dynamic prediction with four core modules, namely data preparation, forest landscape model (FLM) computation, simulation scenario configuration, and process organization. These four modules are designed to support: (1) voluntary data collection and online processing, (2) online synchronous use of FLMs, (3) collaborative simulation scenario design, altering, and execution, and (4) participatory modeling process customization and coordination. We used the LANDIS-II model as a representative FLM to demonstrate the online collaborative strategy for predicting the dynamics of forest aboveground biomass. The results showed that the online collaboration strategy effectively promoted forest landscape dynamic prediction in data preparation, scenario configuration, and task arrangement, thus supporting forest-related decision making.


Assuntos
Mudança Climática , Florestas , Biomassa , Simulação por Computador , Formulação de Políticas , Árvores
2.
Environ Sci Pollut Res Int ; 29(5): 7322-7343, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34476689

RESUMO

In the context of the continuous development of urbanization and global climate change, urban flooding risk has become a well-publicized research issue. The Storm Water Management Model (SWMM) performs very well in urban rain-runoff simulations and is widely used to build flood models in specific areas. Because of the complicated and tedious processing work for urban flood modeling and simulation, multifield participants' cooperation is becoming a trend. To promote the research and application of flood modeling and simulation, some resource sharing-oriented systems and platforms have been proposed with the advantages of network technology. However, they still require a participatory environment that can help modeling participants overcome the difficulties of distributed cooperation in the process of SWMM-based flood modeling and simulation. Therefore, we designed and implemented an online participatory system to coordinate the effective collaboration of modeling participants in this process. By referring to the scenarios and specific participatory demands in the modeling process, the system provides a guiding framework that consists of multiple participatory activities and prepares a series of online auxiliary tools designed for these activities. Using the main urban area of Lishui City as the study area, it was confirmed that the process of SWMM-based flood modeling and simulation can be demonstrated collaboratively on the online participatory system developed in this study.


Assuntos
Inundações , Água , Humanos , Modelos Teóricos , Chuva , Urbanização
3.
Sci China Earth Sci ; 64(8): 1207-1223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249112

RESUMO

Regionality, comprehensiveness, and complexity are regarded as the basic characteristics of geography. The exploration of their core connotations is an essential way to achieve breakthroughs in geography in the new era. This paper focuses on the important method in geographic research: Geographic modeling and simulation. First, we clarify the research requirements of the said three characteristics of geography and its potential to address geo-problems in the new era. Then, the supporting capabilities of the existing geographic modeling and simulation systems for geographic research are summarized from three perspectives: Model resources, modeling processes, and operational architecture. Finally, we discern avenues for future research of geographic modeling and simulation systems for the study of regional, comprehensive and complex characteristics of geography. Based on these analyses, we propose implementation architecture of geographic modeling and simulation systems and discuss the module composition and functional realization, which could provide theoretical and technical support for geographic modeling and simulation systems to better serve the development of geography in the new era.

4.
Environ Res ; 191: 110225, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32956653

RESUMO

Modeling and simulations are important methods in environmental research. Currently, massive simulation resources from different domains have been developed to simulate various dynamic phenomena and processes to address different environmental problems. These heterogeneous simulation resources (e.g., models, data, and servers) can be wasted if they are not shared and reused effectively. Recently, experts may exchange resources and conduct simulations in the open web environment via these shared and distributed services. However, some challenges remain, such as the heterogeneity and reusability of simulation resources. The goal of this study was to analyze typical scenarios involved in simulation tasks and design a set of service-oriented interfaces for different simulation resources. These interfaces, including the model description interface, model encapsulation interface, server management interface and sim-task operation interface, can be used to describe, encapsulate, manage and invoke environmental simulation resources, which can further contribute to resource assembly for environmental simulation tasks. This study evaluated the case of PM2.5 concentration distribution simulation by meteorological data, land cover data and a random forest model in 2014. Using the designed interface, this study conducted the simulation and explored the influence of different interpolation methods (inverse distance weighting (IDW) and kriging) for meteorological data in the random forest-based PM2.5 concentration simulation. For this case, the results show that kriging is a more suitable interpolation method than IDW for meteorological data in the simulation, and this interface design can organize simulation resources, configure tasks, and balance task loads in different servers on the open web.


Assuntos
Simulação por Computador , Meio Ambiente , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA