RESUMO
Kinship testing, which involves genotyping genetic markers and comparing their profiles between individuals, holds significant applications in forensic science. However, the prevalent use of independent markers often lacks the discriminatory power to distinguish pedigrees belong to the same kinship class. While numerous studies have attempted to address this challenge through diverse approaches, the testing efficacy of high-density SNP microarrays in combination with the likelihood approach remains unclear. In this study, we further explored the utilization of linked autosomal SNPs derived from microarrays with the likelihood approach. Several SNP panels with differing numbers of loci were developed and putative pedigrees were constructed to evaluated to test their efficacy in distinguishing second-degree relationships, including grandparent-grandchild, half-siblings, and avuncular. Our findings indicate that the use of high-density SNP microarrays is theoretically feasible for discriminating second-degree relationships, with balanced classification rates ranging from 0.444 to 0.853. Moreover, to optimize the practical effectiveness of discriminating pedigrees belonging to the same kinship class, several other aspects such as adding additional SNPs or an additional relative and examining the effects of genotype errors and population selection were discussed. Our results revealed that the employment of denser marker sets with more accurate genotyping methods may be beneficial. Additionally, the inclusion of additional relatives and the selection of an appropriate reference population also appear to be crucial factors for enhancing the accuracy of kinship testing. In conclusion, our study provides insights into the potential of high-density SNPs in kinship testing and highlights the need for further optimization and examination into various factors that may contribute to enhancing testing efficacy.
RESUMO
Inflammation plays a crucial role in cancer development. The neutrophil-to-lymphocyte ratio (NLR), a measure of inflammation, is obtained from a complete blood count. However, little is known about the association between NLR and cancer in the general adult population in the United States. This study aimed to evaluate whether NLR is associated with cancer in American adults. This retrospective cross-sectional study included 28,016 adult participants from the National Health and Nutrition Examination Survey (NHANES) dataset spanning 2005 to 2018. Data on demographics (age, sex, race, marital status, Poverty-Income Ratio, education level), lifestyle factors (smoking, alcohol consumption, body mass index), medical conditions (hypertension, diabetes, cardiovascular disease), and laboratory parameters (hemoglobin, platelet count, alanine aminotransferase, creatinine, albumin, and lactate dehydrogenase), were collected. Logistic regression analysis was used to investigate the research objectives. Of the total 28,016 participants, 2639 had cancer. The mean age was 49.6 ± 17.6 years, and 50% were male. A positive association between NLR and cancer risk was observed after multivariate adjustment (OR = 1.20, 95% confidence interval (CI) = 1.05-1.36, p = 0.006). Similar patterns were observed in subgroup analyses (all p-values for interaction > 0.05). A higher NLR was directly correlated with an increased risk of developing cancer in adults.
Assuntos
Linfócitos , Neoplasias , Neutrófilos , Inquéritos Nutricionais , Humanos , Masculino , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Neoplasias/epidemiologia , Neoplasias/sangue , Adulto , Estudos Retrospectivos , Contagem de Linfócitos , Estados Unidos/epidemiologia , Idoso , Contagem de Leucócitos , Fatores de RiscoRESUMO
Large yellow croaker (Larimichthys crocea) is susceptible to oxidative denaturation during storage. This work is to investigate the quality alterations by analyzing its physicochemical changes and proteomics throughout preservation under refrigeration, frozen, and slurry ice (SI) conditions. Results revealed that the freshness of large yellow croaker, as evaluated by indicators such as total volatile basic nitrogen, total viable count, and thiobarbituric acid reactive substances, was well maintained while stored in the SI group. Meanwhile, the water distribution in the muscle tissue of group SI exhibited slower fluctuations, thereby preserving the integrity of fish muscle cells. Based on label-free proteomic analysis, a considerable downregulation was observed in the mitogen-activated protein kinase (MAPK) signaling pathway, indicating that SI decelerated this metabolic pathway and effectively delayed the deterioration of muscle. Therefore, the application of SI provides potential for maintaining the quality stability of large yellow croaker.
RESUMO
Tribbles pseudokinase 3 (TRIB3) expression significantly increases during terminal erythropoiesis in vivo. However, we found that TRIB3 expression remained relatively low during human embryonic stem cell (hESC) erythropoiesis, particularly in the late stage, where it is typically active. TRIB3 was expressed in megakaryocyte-erythrocyte progenitor cells and its low expression was necessary for megakaryocyte differentiation. Thus, we proposed that the high expression during late stage of erythropoiesis could be the clue for promotion of maturation of hESC-derived erythroid cells. To our knowledge, the role of TRIB3 in the late stage of erythropoiesis remains ambiguous. To address this, we generated inducible TRIB3 overexpression hESCs, named TRIB3tet-on OE H9, based on a Tet-On system. Then, we analyzed hemoglobin expression, condensed chromosomes, organelle clearance, and enucleation with or without doxycycline treatment. TRIB3tet-on OE H9 cells generated erythrocytes with a high proportion of orthochromatic erythroblast in flow cytometry, enhanced hemoglobin and related protein expression in Western blot, decreased nuclear area size, promoted enucleation rate, decreased lysosome and mitochondria number, more colocalization of LC3 with LAMP1 (lysosome marker) and TOM20 (mitochondria marker) and up-regulated mitophagy-related protein expression after treatment with 2 µg/mL doxycycline. Our results showed that TRIB3 overexpression during terminal erythropoiesis may promote the maturation of erythroid cells. Therefore, our study delineates the role of TRIB3 in terminal erythropoiesis, and reveals TRIB3 as a key regulator of UPS and downstream mitophagy by ensuring appropriate mitochondrial clearance during the compaction of chromatin.
RESUMO
BACKGROUND: The western flower thrips (WFT), Frankliniella occidentalis (Thysanoptera: Thripidae), is a significant pest in horticulture and ornamental agriculture. While exogenous calcium (Ca) has been shown to confer plant immune responses against thrips, the detailed mechanisms of this interaction remain to be elucidated for improved thrips management strategies. This study aimed to assess the impact of exogenous Ca on WFT feeding behavior and to explore its role in enhancing the defense mechanisms of kidney bean plants against WFT attacks. We compared WFT feeding preferences and efficiency on kidney bean plants treated with H2O or Ca, and examined whether exogenous Ca improves plant defense responses to thrips attack. RESULTS: WFT exhibited less preference for feeding on Ca-treated plants over H2O-treated ones. The total duration of WFT's long-ingestion probes was significantly reduced on Ca-treated plants, indicating impaired feeding efficiency. Furthermore, WFT infestation activated both jasmonic acid (JA) and salicylic acid (SA) signaling pathways in kidney bean plants, and exogenous Ca application led to elevated levels of endogenous Ca2+ and CaM, up-regulation of genes associated with JA and SA pathways (LOX, AOS, PAL, and ß-1,3-glucanase), and increased accumulation of JA, SA, flavonoids, and alkaloids. CONCLUSION: Our findings demonstrate that the application of exogenous Ca enhances endogenous Ca2+, JA, and SA signaling pathways in kidney bean plants. This enhancement results in an up-regulation of the biosynthesis of flavonoid and alkaloid, thereby equipping the plants with an enhanced defense against WFT infestation. © 2024 Society of Chemical Industry.
RESUMO
Over past two years, a total of 39,918 hematopoietic stem cell transplantation (HSCT) cases were reported, with 18,194 and 21,714 transplants performed in 2022 and 2023, respectively. Autologous HSCT accounted for 6562 cases (31%) in 2022, while allogeneic HSCT comprised 12,632 cases (69%). In 2023, the number of allogeneic HSCTs exceeded 15,000, maintaining a 69% share. Participation in the 2022 and 2023 surveys included 193 and 212 transplantation teams, respectively, from 27 provinces, municipalities, or autonomous regions. The leading indication of HSCT was acute leukemia, including acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and mixed phenotype acute leukemia, with a total of 17,421 cases. AML was the most common disease (10,339, 38%) for allogeneic HSCT, which was followed by ALL (5925 cases, 21%). Peripheral blood emerged as the primary source of stem cell grafts, utilized in 54% of matched sibling donor transplants and 77% of haploidentical donor transplants. The BuCy-based conditioning regimen was the most prevalent, used in 53% of allogeneic HSCT cases in the past two years. This survey offers a comprehensive overview of the current HSCT landscape and serves as a valuable resource for clinical practice.
RESUMO
Rescuing or compensating mitochondrial function represents a promising therapeutic avenue for radiation-induced chronic wounds. Adult stem cell efficacies are primarily dependent on the paracrine secretion of mitochondria-containing extracellular vesicles (EVs). However, effective therapeutic strategies addressing the quantity of mitochondria and mitochondria-delivery system are lacking. Thus, in this study, we aimed to design an effective hydrogel microneedle patch (MNP) loaded with stem cell-derived mitochondria-rich EVs to gradually release and deliver mitochondria into the wound tissues and boost wound healing. We, first, used metformin to enhance mitochondrial biogenesis and thereby increasing the secretion of mitochondria-containing EVs (termed "Met-EVs") in adipose-derived stem cells. To verify the therapeutic effects of Met-EVs, we established an in vitro and an in vivo model of X-ray-induced mitochondrial dysfunction. The Met-EVs ameliorated the mitochondrial dysfunction by rescuing mitochondrial membrane potential, increasing adenosine 5'-triphosphate levels, and decreasing reactive oxygen species production by transferring active mitochondria. To sustain the release of EVs into damaged tissues, we constructed a Met-EVs@Decellularized Adipose Matrix (DAM)/Hyaluronic Acid Methacrylic Acid (HAMA)-MNP. Met-EVs@DAM/HAMA-MNP can load and gradually release Met-EVs and their contained mitochondria into wound tissues to alleviate mitochondrial dysfunction. Moreover, we found Met-EVs@DAM/HAMA-MNP can markedly promote macrophage polarization toward the M2 subtype with anti-inflammatory and regenerative functions, which can, in turn, enhance the healing process in mice with skin wounds combined radiation injuries. Collectively, we successfully fabricated a delivery system for EVs, Met-EVs@DAM/HAMA-MNP, to effectively deliver stem cell-derived mitochondria-rich EVs. The effectiveness of this system has been demonstrated, holding great potential for chronic wound treatments in clinic.
Assuntos
Hidrogéis , Mitocôndrias , Cicatrização , Cicatrização/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Animais , Hidrogéis/química , Camundongos , Agulhas , Células-Tronco/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Humanos , Espécies Reativas de Oxigênio/metabolismoRESUMO
BACKGROUND: Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), can undergo erythroid differentiation, offering a potentially invaluable resource for generating large quantities of erythroid cells. However, the majority of erythrocytes derived from hPSCs fail to enucleate compared with those derived from cord blood progenitors, with an unknown molecular basis for this difference. The expression of vimentin (VIM) is retained in erythroid cells differentiated from hPSCs but is absent in mature erythrocytes. Further exploration is required to ascertain whether VIM plays a critical role in enucleation and to elucidate the underlying mechanisms. METHODS: In this study, we established a hESC line with reversible vimentin degradation (dTAG-VIM-H9) using the proteolysis-targeting chimera (PROTAC) platform. Various time-course studies, including erythropoiesis from CD34+ human umbilical cord blood and three-dimensional (3D) organoid culture from hESCs, morphological analysis, quantitative real-time PCR (qRT-PCR), western blotting, flow cytometry, karyotyping, cytospin, Benzidine-Giemsa staining, immunofluorescence assay, and high-speed cell imaging analysis, were conducted to examine and compare the characteristics of hESCs and those with vimentin degradation, as well as their differentiated erythroid cells. RESULTS: Vimentin expression diminished during normal erythropoiesis in CD34+ cord blood cells, whereas it persisted in erythroid cells differentiated from hESC. Depletion of vimentin using the degradation tag (dTAG) system promotes erythroid enucleation in dTAG-VIM-H9 cells. Nuclear polarization of erythroblasts is elevated by elimination of vimentin. CONCLUSIONS: VIM disappear during the normal maturation of erythroid cells, whereas they are retained in erythroid cells differentiated from hPSCs. We found that retention of vimentin during erythropoiesis impairs erythroid enucleation from hPSCs. Using the PROTAC platform, we validated that vimentin degradation by dTAG accelerates the enucleation rate in dTAG-VIM-H9 cells by enhancing nuclear polarization.
Assuntos
Diferenciação Celular , Células Eritroides , Células-Tronco Pluripotentes , Vimentina , Humanos , Linhagem Celular , Células Eritroides/citologia , Células Eritroides/metabolismo , Eritropoese , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteólise , Vimentina/metabolismo , Vimentina/genéticaRESUMO
BACKGROUND: Proper control of the lineage bias of megakaryocytic and erythroid progenitor cells (MEPs) is of significant importance, the disorder of which will lead to abnormalities in the number and function of platelets and erythrocytes. Unfortunately, the signaling pathways regulating MEP differentiation largely remain to be elucidated. This study aimed to analyze the role and the underlying molecular mechanism of miR-1915-3p in megakaryocytic and erythroid differentiation. METHODS: We utilized miRNA mimics and miRNA sponge to alter the expression of miR-1915-3p in megakaryocytic and/or erythroid potential cells; siRNA and overexpression plasmid to change the expression of SOCS4, a potential target of miR-1915-3p. The expression of relevant surface markers was detected by flow cytometry. We scanned for miR-1915-3p target genes by mRNA expression profiling and bioinformatic analysis, and confirmed the targeting by dual-luciferase reporter assay, western blot and gain- and lost-of-function studies. One-way ANOVA and t-test were used to analyze the statistical significance. RESULTS: In this study, overexpression or knockdown of miR-1915-3p inhibited or promoted erythroid differentiation, respectively. Accordingly, we scanned for miR-1915-3p target genes and confirmed that SOCS4 is one of the direct targets of miR-1915-3p. An attentive examination of the endogenous expression of SOCS4 during megakaryocytic and erythroid differentiation suggested the involvement of SOCS4 in erythroid/megakaryocytic lineage determination. SOCS4 knockdown lessened erythroid surface markers expression, as well as improved megakaryocytic differentiation, similar to the effects of miR-1915-3p overexpression. While SOCS4 overexpression resulted in reversed effects. SOCS4 overexpression in miR-1915-3p upregulated cells rescued the effect of miR-1915-3p. CONCLUSIONS: miR-1915-3p acts as a negative regulator of erythropoiesis, and positively in thrombopoiesis. SOCS4 is one of the key mediators of miR-1915-3p during the differentiation of MEPs.
RESUMO
Nosema ceranae is a microsporidian parasite that threatens current apiculture. N. ceranae-infected honey bees (Apis mellifera) exhibit morbid physiological impairments and reduced honey production, malnutrition, shorter life span, and higher mortality than healthy honey bees. In this study, we found that dimethyl sulfoxide (DMSO) could enhance the survival rate of N. ceranae-infected honey bees. Therefore, we investigated the effect of DMSO on N. ceranae-infected honey bees using comparative RNA sequencing analysis. Our results revealed that DMSO was able to affect several biochemical pathways, especially the metabolic-related pathways in N. ceranae-infected honey bees. Based on these findings, we conclude that DMSO may be a useful alternative for treating N. ceranae infection in apiculture.
Assuntos
Dimetil Sulfóxido , Nosema , Animais , Nosema/efeitos dos fármacos , Nosema/fisiologia , Abelhas/microbiologia , Dimetil Sulfóxido/farmacologia , Microsporidiose/veterináriaRESUMO
BACKGROUND: The integration of telehealth-supported programs in chronic disease management has become increasingly common. However, its effectiveness for individuals with knee osteoarthritis (KOA) remains unclear. OBJECTIVE: This study aimed to assess the effectiveness of telehealth-supported exercise or physical activity programs for individuals with KOA. METHODS: A comprehensive literature search encompassing Embase, MEDLINE, CENTRAL, Web of Science, PubMed, Scopus, PEDro, GreyNet, and medRxiv from inception to September 2023 was conducted to identify randomized controlled trials comparing telehealth-supported exercise or physical activity programs to a control condition for KOA. Data were extracted and qualitatively synthesized across eligible studies, and a meta-analysis was performed to evaluate the effects. The study was reported according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020. RESULTS: In total, 23 studies met eligibility criteria, with 20 included in the meta-analysis. Results showed that telehealth-supported exercise or physical activity programs reduced pain (g=-0.39; 95% CI -0.67 to -0.11; P<.001), improved physical activity (g=0.13; 95% CI 0.03-0.23; P=.01), and enhanced physical function (g=-0.51; 95% CI -0.98 to -0.05; P=.03). Moreover, significant improvements in quality of life (g=0.25; 95% CI 0.14-0.36; P<.001), self-efficacy for pain (g=0.72; 95% CI 0.53-0.91; P<.001), and global improvement (odds ratio 2.69, 95% CI 1.41-5.15; P<.001) were observed. However, self-efficacy for physical function (g=0.14; 95% CI -0.26 to 0.53; P=.50) showed insignificant improvements. Subgroup analyses based on the World Health Organization classification of digital health (pain: χ22=6.5; P=.04 and physical function: χ22=6.4; P=.04), the type of teletechnology in the intervention group (pain: χ24=4.8; P=.31 and function: χ24=13.0; P=.01), and active or inactive controls (pain: χ21=5.3; P=.02 and physical function: χ21=3.4; P=.07) showed significant subgroup differences. CONCLUSIONS: Telehealth-supported exercise or physical activity programs might reduce knee pain and improve physical activity, physical function, quality of life, self-efficacy, and global improvement in individuals with KOA. Future research should consider longer implementation durations and assess the feasibility of incorporating wearables and standardized components into large-scale interventions to evaluate the effects. TRIAL REGISTRATION: PROSPERO CRD42022359658; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=359658.
Assuntos
Terapia por Exercício , Exercício Físico , Osteoartrite do Joelho , Telemedicina , Humanos , Osteoartrite do Joelho/reabilitação , Osteoartrite do Joelho/terapia , Terapia por Exercício/métodos , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Feminino , Masculino , Pessoa de Meia-IdadeRESUMO
The rare physical property of negative thermal expansion (NTE) is intriguing because materials with a large NTE over a wide temperature range can serve as high-performance thermal expansion compensators. However, the applications of NTE are hindered by the fact that most of the available NTE materials show small magnitudes of NTE, and/or NTE occurs only in a narrow temperature range. Herein, for the first time, we investigated the effect of anion substitution instead of general Pb/Ti-site substitutions on the thermal expansion properties of a typical ferroelectric NTE material, PbTiO3. Intriguingly, the substitution of S for O in PbTiO3 further increases the tetragonality of PbTiO3. Consequently, an unusually enhanced NTE with an average volumetric coefficient of thermal expansion of îV = -2.50 × 10-5 K-1 was achieved over a wide temperature range (300-790 K), which is in contrast to that of pristine PbTiO3 (îV = -1.99 × 10-5 K-1, RT-763 K). The intensified NTE is attributed to the enhanced hybridization between Pb/Ti and O/S atoms by the substitution of S, as evidenced by our theoretical investigations. We therefore demonstrate a new technique for introducing mixed anions to achieve a large NTE over a wide temperature range in PbTiO3-based ferroelectrics.
RESUMO
BACKGROUND: Chinese giant salamander protein hydrolysates (CGSPH) are beneficial to human health as a result of their high content of amino acids and peptides. However, the formation of bitter peptides in protein hydrolysates (PHs) would hinder their application in food industry. The ultrasound assisted wet-heating Maillard reaction (MR) is an effective way to improve the flavor of PHs. Thus, the effect of ultrasonic assisted wet-heating MR on the structure and flavor of CGSPH was investigated in the present study. RESULTS: The results indicated that the ultrasound assisted wet-heating MR products (MRPs) exhibited a higher degree of graft and more significant changes in the secondary and tertiary structures of CGSPH compared to traditional wet-heating MRPs. Moreover, ultrasound assisted wet-heating MR could significantly increase the content of small molecule peptides and reduce the content of free amino acids of CGSPH, which resulted in more significant changes in flavor characteristics. The changed in flavor properties after MR (especially ultrasound assisted wet-heating MRPs) were mainly manifested by a significant reduction in bitterness, as well as a significant increase in the content of aromatic aldehyde ester compounds such as furan-2-carbaldehyde, butanal, benzaldehyde, furfural, etc. CONCLUSIONS: Ultrasound assisted wet-heating MR between CGSPH and xylose could be a promising way to improve the sensory characteristics of CGSPH. © 2024 Society of Chemical Industry.
RESUMO
The size or the curvature of nanoparticles (NPs) plays an important role in regulating the composition of the protein corona. However, the molecular mechanisms of how curvature affects the interaction of NPs with serum proteins still remain elusive. In this study, we employ all-atom molecular dynamics simulations to investigate the interactions between two typical serum proteins and PEGylated Au NPs with three different surface curvatures (0, 0.1, and 0.5 nm-1, respectively). The results show that for proteins with a regular shape, the binding strength between the serum protein and Au NPs decreases with increasing curvature. For irregularly shaped proteins with noticeable grooves, the binding strength between the protein and Au NPs does not change obviously with increasing curvature in the cases of smaller curvature. However, as the curvature continues to increase, Au NPs may act as ligands firmly adsorbed in the protein grooves, significantly enhancing the binding strength. Overall, our findings suggest that the impact of NP curvature on protein adsorption may be nonmonotonic, which may provide useful guidelines for better design of functionalized NPs in biomedical applications.
Assuntos
Ouro , Nanopartículas Metálicas , Simulação de Dinâmica Molecular , Ouro/química , Nanopartículas Metálicas/química , Proteínas Sanguíneas/química , Propriedades de Superfície , Ligação Proteica , Polietilenoglicóis/química , Adsorção , HumanosRESUMO
BACKGROUND: Venous air embolism (VAE) is a potentially lethal condition, with a reported incidence rate of about 0.13%, and the true incidence may be higher since many VAE are asymptomatic. The current treatments for VAE include Durant's maneuver, aspiration and removal of air through venous catheters, and hyperbaric oxygen therapy. For critically ill patients, use of cardiotonic drugs and chest compressions remain useful strategies. The wider availability of extracorporeal membrane oxygenation (ECMO) has brought a new option for VAE patients. CASE SUMMARY: A 53-year-old female patient with VAE presented to the emergency clinic due to abdominal pain with fever for 1 d and unconsciousness for 2 h. One day ago, the patient suffered from abdominal pain, fever, and diarrhea. She suddenly became unconscious after going to the toilet during the intravenous infusion of ciprofloxacin 2 h ago, accompanied by nausea and vomiting, during which a small amount of gastric contents were discharged. She was immediately sent to a local hospital, where cranial and chest computed tomography showed bilateral pneumonia as well as accumulated air visible in the right ventricle and pulmonary artery. The condition deteriorated despite endotracheal intubation, rehydration, and other treatments, and the patient was then transferred to our hospital. Veno-arterial ECMO was applied in our hospital, and the patient's condition gradually improved. The patient was successfully weaned from ECMO and extubated after two days. CONCLUSION: ECMO may be an important treatment for patients with VAE in critical condition.
RESUMO
BACKGROUND: Increasing evidence suggests that leptin is involved in the pathology of autism spectrum disorder (ASD). In this study, our objective was to investigate the levels of leptin in the blood of children with ASD and to examine the overall profile of adipokine markers in ASD through meta-analysis. METHODS: Leptin concentrations were measured using an enzyme-linked immunosorbent assay (ELISA) kit, while adipokine profiling, including leptin, was performed via meta-analysis. Original reports that included measurements of peripheral adipokines in ASD patients and healthy controls (HCs) were collected from databases such as Web of Science, PubMed, and Cochrane Library. These studies were collected from September 2022 to September 2023 and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Standardized mean differences were calculated using a random effects model for the meta-analysis. Additionally, we performed meta-regression and explored heterogeneity among studies. RESULTS: Our findings revealed a significant increase in leptin levels in children with ASD compared to HCs (p = 0.0319). This result was consistent with the findings obtained from the meta-analysis (p < 0.001). Furthermore, progranulin concentrations were significantly reduced in children with ASD. However, for the other five adipokines analyzed, there were no significant differences observed between the children with ASD and HCs children. Heterogeneity was found among the studies, and the meta-regression analysis indicated that publication year and latitude might influence the results of the meta-analysis. CONCLUSIONS: These findings provide compelling evidence that leptin levels are increased in children with ASD compared to healthy controls, suggesting a potential mechanism involving adipokines, particularly leptin, in the pathogenesis of ASD. These results contribute to a better understanding of the pathology of ASD and provide new insights for future investigations.
Assuntos
Adipocinas , Transtorno do Espectro Autista , Leptina , Humanos , Transtorno do Espectro Autista/sangue , Leptina/sangue , Criança , Adipocinas/sangue , Biomarcadores/sangueRESUMO
Renal transplantation is the preferred treatment option for patients with end-stage renal disease (ESRD) in a clinical setting. Antibody mediated rejection (AMR) is one of the leading causes of graft dysfunction. To address the current shortcomings in the early diagnosis and treatment of AMR in clinical practice, this article analyzes the distribution of different circulating T follicular helper (cTfh) cell subtypes and B cell subpopulations in peripheral blood and detects the cytokine levels of chemokine ligand 13 (CXCL13), interleukin-21 (IL-21), and interleukin-4 (IL-4) related to cTfh cells in peripheral blood of kidney transplant recipients. Moreover, we also explore the correlation between cTfh cells, peripheral blood memory B cells, and AMR, their value as early predictive indicators of AMR, and explore potential therapeutic targets for AMR patients. Our results indicate that the proportion of cTfh cells increased at the onset of AMR, which plays an important role in antigen-specific B-cell immune regulation. Activation of cTfh cells in AMR patients correlates with phenotypes of memory B cells and plasma blasts. cTfh cells and memory B cells have promising diagnostic efficacies and predictive values for AMR. The proportion of cTfh cells to CD4+ T cells and the proportion of memory B cells to CD19+ B cells are correlated with serum creatinine levels, indicating that cTfh cells and memory B cells may be involved in the progression of AMR. In addition, the CXCL13, IL-21, and IL-4, which were associated with cTfh cells, may be involved in the onset of AMR.
Assuntos
Rejeição de Enxerto , Transplante de Rim , Células B de Memória , Humanos , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/diagnóstico , Feminino , Células B de Memória/imunologia , Masculino , Pessoa de Meia-Idade , Adulto , Quimiocina CXCL13/metabolismo , Células T Auxiliares Foliculares/imunologia , Falência Renal Crônica/imunologia , Falência Renal Crônica/cirurgia , Interleucinas/metabolismo , Interleucina-4/metabolismo , Memória ImunológicaRESUMO
BACKGROUND: Giant salamander protein peptide is a peptide with rich functional properties. Giant salamander protein peptide KGEYNK (KK-6) is a peptide with both antioxidant and anti-inflammatory properties. The antioxidant and anti-inflammatory mechanisms of KK-6 are still unclear. When we studied the functional mechanism of KK-6, we found that the antioxidant property of KK-6 has a synergistic and promoting effect on anti-inflammatory properties. RESULTS: KK-6 enhances cellular resistance to LPS via the MAPK/NF-κB signaling pathway, leading to increased levels of inflammatory factors: interleukin-1ß (764.81 ng mL-1), interleukin-6 (1.06 ng mL-1) and tumor necrosis factor-α (4440.45 ng mL-1). KK-6 demonstrates potent antioxidant properties by activating the Nrf2 signaling pathway, resulting in elevated levels of antioxidant enzymes (glutathione peroxidase: 0.03 µg mL-1; superoxide dismutase: 0.589 µg mL-1) and a reduction in the concentration of the oxidative product malondialdehyde (967.05 µg mL-1). CONCLUSION: Our findings highlight the great potential of KK-6, a peptide extracted from giant salamander protein, as a remedy for intestinal inflammation. Through its dual role as an antioxidant and anti-inflammatory agent, KK-6 offers a promising avenue for alleviating inflammation-related damage and oxidative stress. This study lays the foundation for further exploration of giant salamander products and highlights their importance in health and novel food development. © 2024 Society of Chemical Industry.
Assuntos
Anti-Inflamatórios , Antioxidantes , NF-kappa B , Peptídeos , Urodelos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , NF-kappa B/metabolismo , NF-kappa B/genética , NF-kappa B/imunologia , Peptídeos/farmacologia , Peptídeos/química , Proteínas de Anfíbios/química , Proteínas de Anfíbios/farmacologia , Interleucina-6/metabolismo , Interleucina-6/imunologia , Interleucina-6/genética , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Superóxido Dismutase/metabolismo , Células RAW 264.7 , Interleucina-1beta/metabolismo , Interleucina-1beta/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismoRESUMO
OBJECTIVES: To develop and validate a prediction model utilizing clinical and ultrasound (US) data for preoperative assessment of efficacy following US-guided thermal ablation (TA) in patients with benign thyroid nodules (BTNs) ≥ 2 cm. MATERIALS AND METHODS: We retrospectively assessed 962 patients with 1011 BTNs who underwent TA at four tertiary centers between May 2018 and July 2022. Ablation efficacy was categorized into therapeutic success (volume reduction rate [VRR] > 50%) and non-therapeutic success (VRR ≤ 50%). We identified independent factors influencing the ablation efficacy of BTNs ≥ 2 cm in the training set using multivariate logistic regression. On this basis, a prediction model was established. The performance of model was further evaluated by discrimination (area under the curve [AUC]) in the validation set. RESULTS: Of the 1011 nodules included, 952 (94.2%) achieved therapeutic success at the 12-month follow-up after TA. Independent factors influencing VRR > 50% included sex, nodular composition, calcification, volume, and largest diameter (all p < 0.05). The prediction equation was established as follows: p = 1/1 + Exp∑[8.113 -2.720 × (if predominantly solid) -2.790 × (if solid) -1.275 × (if 10 mL < volume ≤ 30mL) -1.743 × (if volume > 30 mL) -1.268 × (if with calcification) -2.859 × (if largest diameter > 3 cm) +1.143 × (if female)]. This model showed great discrimination, with AUC of 0.908 (95% confidence interval [CI]: 0.868-0.947) and 0.850 (95% CI: 0.748-0.952) in the training and validation sets, respectively. CONCLUSIONS: A clinical prediction model was successfully developed to preoperatively predict the therapeutic success of BTNs larger than 2 cm in size following US-guided TA. This model aids physicians in evaluating treatment efficacy and devising personalized prognostic plans.
Assuntos
Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/cirurgia , Feminino , Estudos Retrospectivos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto , Técnicas de Ablação/métodos , Idoso , Ultrassonografia de Intervenção/métodosRESUMO
China's rapid development in the context of carbon neutrality has positioned it as the global leader in green bond issuance. As the Chinese A-share market continues to slump, adverse shocks are accumulating. Thus, the question arises: How will the issuance of green bonds (GB) impact stock price crash risk (SPCR)? The present study utilizes datasets of Chinese A-share listed firms from 2012 to 2022 and conducts a differences-in-difference analysis to address this inquiry. The findings indicate that issuing GB can significantly reduce SPCR, suggesting that GB plays a stabilizing role in the capital market. This effect remains robust after consideration of parallel trend testing, placebo tests, propensity score matching, replacement of explained variables, and controlling for geographic and industrial factors. The mechanism studies demonstrate that the issuance of GB can effectively alleviate financing constraints faced by companies and reduce SPCR through the financing constraints mechanism. The issuance can also enhance firm exposure and attract investor attention, thereby mitigating SPCR through the investor attention mechanism. The issuance contributes to the formation of a positive reputation image among investors and can diminish SPCR through the investor sentiment mechanism. The heterogeneity analyses show that the depressive effect of issuing GB on SPCR is more pronounced in state-owned enterprises, heavily polluting industries, and regions with a higher degree of marketization. Further discussion suggests that given the influence of externalities, the green signals released when a firm issues GB can spread within the capital market, generating a positive spillover effect on the decrease in SPCR of other firms in the same region and a negative spillover effect on the increase in SPCR of other firms in the same industry. This study not only confirms GB's stabilization role in the capital market, but also offers theoretical insights for improving the institutional design of the green bond market and promoting sustainable green development.