Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21776, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526725

RESUMO

Precipitation is an important component of the hydrological cycle and has significant impact on ecological environment and social development, especially in arid areas where water resources are scarce. As a typical arid and semi-arid region, the Mongolian Plateau is ecologically fragile and highly sensitive to climate change. Reliable global precipitation data is urgently needed for the sustainable development over this gauge-deficient region. With high-quality estimates, fine spatiotemporal resolutions, and wide coverage, the state-of-the-art Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) and European Center for Medium-range Weather Forecasts Reanalysis 5 (ERA5) have great potential for regional climatic, hydrological, and ecological applications. However, how they perform has not been well investigated on the Mongolian Plateau. Therefore, this study evaluated the performance of three IMERG V06 datasets (ER, LR and FR), two ERA5 products (ERA5-HRES and ERA5-Land), and their predecessors (TMPA-3B42 and ERA-Interim) over the region across 2001-2018. The results showed that all products broadly characterized seasonal precipitation cycles and spatial patterns, but only the three reanalysis products, IMERG FR and TMPA-3B42 could capture interannual and decadal variability. When describing daily precipitation, dataset performances ranked ERA5-Land > ERA5-HRES > ERA-Interim > IMERG FR > IMERG LR > IMERG ER > TMPA-3B42. All products showed deficiencies in overestimating weak precipitation and underestimating high-intensity precipitation. Besides, products performed best in agricultural lands and forests along the northern and south-eastern edges, followed by urban areas and grasslands closer to the center, and worst in the sparse vegetation and bare areas of the south-west. Due to a negative effect of topographic complexity, IMERG showed poor detection capabilities in forests. Accordingly, this research currently supports the applicability of reanalysis ERA5 data over the arid, topographically complex Mongolian Plateau, which can inform regional applications with different requirements.


Assuntos
Mudança Climática , Hidrologia , Florestas
2.
Artigo em Inglês | MEDLINE | ID: mdl-30235898

RESUMO

Analyzing the association between fine particulate matter (PM2.5) pollution and socio-economic factors has become a major concern in public health. Since traditional analysis methods (such as correlation analysis and geographically weighted regression) cannot provide a full assessment of this relationship, the quantile regression method was applied to overcome such a limitation at different spatial scales in this study. The results indicated that merely 3% of the population and 2% of the Gross Domestic Product (GDP) occurred under an annually mean value of 35 µg/m³ in mainland China, and the highest population exposure to PM2.5 was located in a lesser-known city named Dazhou in 2014. The analysis results at three spatial scales (grid-level, county-level, and city-level) demonstrated that the grid-level was the optimal spatial scale for analysis of socio-economic effects on exposure due to its tiny uncertainty, and the population exposure to PM2.5 was positively related to GDP. An apparent upward trend of population exposure to PM2.5 emerged at the 80th percentile GDP. For a 10 thousand yuan rise in GDP, population exposure to PM2.5 increases by 1.05 person/km² at the 80th percentile, and 1.88 person/km2 at the 95th percentile, respectively.


Assuntos
Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/economia , Produto Interno Bruto , Material Particulado/economia , Regressão Espacial , Poluentes Atmosféricos , China , Cidades , Humanos , Saúde Pública , Análise de Regressão , Fatores Socioeconômicos , Incerteza
3.
Int J Environ Res Public Health ; 12(10): 12264-76, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26426035

RESUMO

Hourly PM2.5 observations collected at 12 stations over a 1-year period are used to identify variations between urban and suburban areas in Beijing. The data demonstrates a unique monthly variation form, as compared with other major cities. Urban areas suffer higher PM2.5 concentration (about 92 µg/m³) than suburban areas (about 77 µg/m³), and the average PM2.5 concentration in cold season (about 105 µg/m³) is higher than warm season (about 78 µg/m³). Hourly PM2.5 observations exhibit distinct seasonal, diurnal and day-of-week variations. The diurnal variation of PM2.5 is observed with higher concentration at night and lower value at daytime, and the cumulative growth of nighttime (22:00 p.m. in winter) PM2.5 concentration maybe due to the atmospheric stability. Moreover, annual average PM2.5 concentrations are about 18 µg/m³ higher on weekends than weekdays, consistent with driving restrictions on weekdays. Additionally, the nighttime peak in weekdays (21:00 p.m.) is one hour later than weekends (20:00 p.m.) which also shows the evidence of human activity. These observed facts indicate that the variations of PM2.5 concentration between urban and suburban areas in Beijing are influenced by complex meteorological factors and human activities.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Urbanização , Pequim , Análise por Conglomerados , Monitoramento Ambiental , Tamanho da Partícula , Estações do Ano , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA