Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 921: 171019, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382605

RESUMO

Choosing a good crop rotation plan helps maintain soil fertility and creates a healthy soil ecosystem. However, excessive fertilization and continuous cultivation of vegetables in a greenhouse results in secondary salinization of the soil. It remains unclear how crop rotation affects Yunnan's main place for vegetable growing in the greenhouse. Six plant cultivation patterns were chosen to determine how different rotation patterns affect the chemical properties and the soil microbial communities with secondary salinization, including lettuce monoculture, lettuce-large leaf mustard, lettuce-red leaf beet, lettuce-cabbage, lettuce-romaine lettuce, and lettuce-cilantro (DZ, A1, A2, A3, A4, and A5). The results showed that all treatments increased the proportion of nutrients available in the soil, and the effect of the A1 treatment was the most significant compared to the monoculture mode. The high-throughput sequencing findings revealed that distinct crop rotation patterns exerted varying effects on the microbial communities. Microbial community diversity was significantly lower in the monoculture than in the other treatments. The number of microbial operational taxonomic units OTUs was significantly higher in the crop rotation modes (P < 0.05), and the A1 treatment had larger numbers and diversity of bacterial and fungal OTUs (Shannon's and Simpson's) than other treatments (P < 0.05). Prominent bacterial and fungal communities were readily observable in the soils planted with rotational crops. Proteobacteria had the highest relative abundance of bacteria, whereas Ascomycota was the most abundant fungus. The principal coordinate analysis at the OTU level separated soil bacterial and fungal growth communities under the different treatments. Among the six treatments, The first two axes (PC1 and PC2) described 46.44 % and 42.42 % of the bacterial and fungal communities, respectively. Network-based analysis showed that Bacteroidota and Gemmatimonadota members of the genus Bacteroidota were positively correlated with Proteobacteria. Members of Ascomycota and Chytridiomycota exhibited positive relationships. These results extend the theoretical understanding of how various crop rotation patterns affect soil chemical properties, microbial community diversity, and metabolic functions. They reveal the beneficial effects of crop rotation patterns on enhanced soil quality. This study provides theoretical guidance for the future enhancement of sustainable agriculture and soil management planning.


Assuntos
Ascomicetos , Microbiota , Solo/química , Verduras , Microbiologia do Solo , China , Bactérias
2.
J Fungi (Basel) ; 9(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37367613

RESUMO

Arbuscular mycorrhizal fungi (AMF) play key roles in enhancing plant tolerance to heavy metals, and iron (Fe) compounds can reduce the bioavailability of arsenic (As) in soil, thereby alleviating As toxicity. However, there have been limited studies of the synergistic antioxidant mechanisms of AMF (Funneliformis mosseae) and Fe compounds in the alleviation of As toxicity on leaves of maize (Zea mays L.) with low and moderate As contamination. In this study, a pot experiment was conducted with different concentrations of As (0, 25, 50 mgꞏkg-1) and Fe (0, 50 mgꞏkg-1) and AMF treatments. Results showed that under low and moderate As concentrations (As25 and As50), the co-inoculation of AMF and Fe compound significantly increased the biomass of maize stems and roots, phosphorus (P) concentration, and P-to-As uptake ratio. Moreover, the co-inoculation of AMF and Fe compound addition significantly reduced the As concentration in stem and root, malondialdehyde (MDA) content in leaf, and soluble protein and non-protein thiol (NPT) contents in leaf of maize under As25 and As50 treatments. In addition, co-inoculation with AMF and Fe compound addition significantly increased the activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) in the leaves of maize under As25 treatment. Correlation analysis showed that stem biomass and leaf MDA content were very significantly negatively correlated with stem As content, respectively. In conclusion, the results indicated that the co-inoculation of AMF and Fe compound addition can inhibit As uptake and promote P uptake by maize under low and moderate As contamination, thereby mitigating the lipid peroxidation on maize leaves and reducing As toxicity by enhancing the activities of antioxidant enzymes under low As contamination. These findings provide a theoretical basis for the application of AMF and Fe compounds in the restoration of cropland soil contaminated with low and moderate As.

3.
Huan Jing Ke Xue ; 42(8): 3963-3970, 2021 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-34309283

RESUMO

To investigate the dominant plants in ecological restoration of tin mining areas, field investigations were conducted in a tin tailings area in Lailishan, Yunnan Provence, and 15 dominant plants and corresponding rhizosphere soils were collected. The plant root mycorrhizal infection rate; the copper (Cu), cadmium (Cd), arsenic (As), nickel (Ni), lead (Pb), and tin (Sn) contents; and the chemical properties of the rhizosphere tailings were determined. The transfer and enrichment coefficients of six heavy metals were calculated for each of the 15 plants to comprehensively evaluate the application potential of native plants. The rhizophere tailings had an average pH value of 3.13, which was acidic. The organic matter, total nitrogen, total phosphorus, total potassium, alkaline hydrolyzed nitrogen, and available phosphorus content of the soils was 6.07 g ·kg-1, 5.74 g ·kg-1, 0.62 g ·kg-1, 8.66 g ·kg-1, 30.84 mg ·kg-1, and 2.08 mg ·kg-1 respectively, indicating relatively nutrient-poor soil. The average Cu, Cd, Ni, Pb, As, and Sn contents of the soils were 347.40, 1.02, 1.34, 168.47, 25.81, and 2299.02 mg ·kg-1, respectively. Among the heavy metals, the Cd content reached a third-level pollution warning value. The soil also contained a large amount of Cu and Pb which exhibited a different spatial distribution. This area appears to have a high risk of Cu, Pb, and Cd pollution. In addition, the roots of Olea europaea L. and Eurya japonica Thunb. had a high rate of mycorrhizal infection. Alnus cremastogyne Burk., Bambusa multiplex (Lour.) Raeusch. ex Schult. 'Alphonse-Kar' R. A. Young, Juncus effusus L., and Cyperus rotundus L. var. had a strong ability to absorb and transport heavy metals. The other plants were also adapted to the growth environment of the tin tailings, with the potential to restore the mining area.


Assuntos
Metais Pesados , Poluentes do Solo , China , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Estanho
4.
Bull Environ Contam Toxicol ; 107(6): 1155-1160, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34236456

RESUMO

Agricultural arsenic (As, CAS. No. 7440-38-2) over the issue of pollution has been related to people's livelihood, security and moderate use of As contaminated soil is an important aspect of contaminated soil remediation. In this potted plant experiment, synergistic effects of arbuscular mycorrhizal fungi (AMF) Funneliformis mosseae and iron (Fe, CAS. No. 7439-89-6) oxides on plant growth and phosphorus (P, CAS. No. 7723-14-0), As and Fe uptake by maize (Zea mays L.) were studied on simulating medium As-polluted soils in greenhouse. Different amounts (0, 5, 10, 20, 40 g kg- 1) of iron tailings (IT) were added. The results showed that IT20 and IT40 addition significantly increased mycorrhizal infection rate, plant biomass, root length and P, Fe uptake under FM treatment; IT40 addition decreased As concentration in roots. In addition, FM inoculation increased biomass, root length and P uptake by shoots, but decreased Fe and As concentration in shoots. Therefore, the combined FM inoculation and IT40 addition promoted maize growth and decreased As concentration in shoots by decreasing As absorption efficiency, increasing P and Fe uptake and P/As ratio.


Assuntos
Arsênio , Micorrizas , Poluentes do Solo , Arsênio/toxicidade , Biodegradação Ambiental , Fungos , Ferro , Micorrizas/química , Fósforo , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Zea mays
5.
Environ Sci Pollut Res Int ; 25(24): 24338-24347, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29948717

RESUMO

In this study, we investigated the effects of the arbuscular mycorrhizal fungi (AMF) Funneliformis mosseae and Diversispora spurcum on the growth, antioxidant physiology, and uptake of phosphorus (P), sulfur (S), lead (Pb), zinc (Zn), cadmium (Cd), and arsenic (As) by maize (Zea mays L.) grown in heavy metal-polluted soils though a potted plant experiment. F. mosseae significantly increased the plant chlorophyll a content, height, and biomass; decreased the H2O2 and malondialdehyde (MDA) contents; and enhanced the superoxide dismutase (SOD) and catalase (CAT) activities and the total antioxidant capacity (T-AOC) in maize leaves; this effect was not observed with D. spurcum. Both F. mosseae and D. spurcum promoted the retention of heavy metals in roots and increased the uptake of Pb, Zn, Cd, and As, and both fungi restricted heavy metal transfer, resulting in decreased Pb, Zn, and Cd contents in shoots. Therefore, the fungi reduced the translocation factors for heavy metal content (TF) and uptake (TF') in maize. Additionally, F. mosseae promoted P and S uptake by shoots, and D. spurcum increased P and S uptake by roots. Moreover, highly significant negative correlations were found between antioxidant capacity and the H2O2, MDA, and heavy metal contents, and there was a positive correlation with the biomass of maize leaves. These results suggested that AMF alleviated plant toxicity and that this effect was closely related to antioxidant activation in the maize leaves and increased retention of heavy metals in the roots.


Assuntos
Metais Pesados/farmacocinética , Micorrizas/fisiologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Zea mays/microbiologia , Antioxidantes/metabolismo , Biomassa , Glomeromycota/fisiologia , Peróxido de Hidrogênio/metabolismo , Fósforo/farmacocinética , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Poluentes do Solo/farmacocinética , Enxofre/farmacocinética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA