Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Int J Biol Macromol ; : 132793, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830492

RESUMO

Recombinant cytochrome P450 monooxygenases possess significant potential as biocatalysts, and efforts to improve heme content, electron coupling efficiency, and catalytic activity and stability are ongoing. Domain swapping between heme and reductase domains, whether natural or engineered, has thus received increasing attention. Here, we successfully achieved split intein-mediated reconstitution (IMR) of the heme and reductase domains of P450 BM3 both in vitro and in vivo. Intriguingly, the reconstituted enzymes displayed promising properties for practical use. IMR BM3 exhibited a higher heme content (>50 %) and a greater tendency for oligomerization compared to the wild-type enzyme. Moreover, these reconstituted enzymes exhibited a distinct increase in activity ranging from 165 % to 430 % even under the same heme concentrations. The reproducibility of our results strongly suggests that the proposed reconstitution approach could pave a new path for enhancing the catalytic efficiency of related enzymes.

2.
J Microbiol Biotechnol ; 34(3): 562-569, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38247219

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo) causes a devastating bacterial leaf blight in rice. Here, the antimicrobial effects of D-limonene, L-limonene, and its oxidative derivative carveol against Xoo were investigated. We revealed that carveol treatment at ≥ 0.1 mM in liquid culture resulted in significant decrease in Xoo growth rate (> 40%) in a concentration-dependent manner, and over 1 mM, no growth was observed. The treatment with D-limonene and L-limonene also inhibited the Xoo growth but to a lesser extent compared to carveol. These results were further elaborated with the assays of motility, biofilm formation and xanthomonadin production. The carveol treatment over 1 mM caused no motilities, basal level of biofilm formation (< 10%), and significantly reduced xanthomonadin production. The biofilm formation after the treatment with two limonene isomers was decreased in a concentration-dependent manner, but the degree of the effect was not comparable to carveol. In addition, there was negligible effect on the xanthomonadin production mediated by the treatment of two limonene isomers. Field emission-scanning electron microscope (FE-SEM) unveiled that all three compounds used in this study cause severe ultrastructural morphological changes in Xoo cells, showing shrinking, shriveling, and holes on their surface. Moreover, quantitative real-time PCR revealed that carveol and D-limonene treatment significantly down-regulated the expression levels of genes involved in virulence and biofilm formation of Xoo, but not with L-limonene. Together, we suggest that limonenes and carveol will be the candidates of interest in the development of biological pesticides.


Assuntos
Monoterpenos Cicloexânicos , Oryza , Xanthomonas , Limoneno/farmacologia , Limoneno/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Oryza/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
3.
J Microbiol Biotechnol ; 34(3): 725-734, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38044690

RESUMO

CYP102A1 from Bacillus megaterium is an important enzyme in biotechnology, because engineered CYP102A1 enzymes can react with diverse substrates and produce human cytochrome P450-like metabolites. Therefore, CYP102A1 can be applied to drug metabolite production. Terpinen-4-ol is a cyclic monoterpene and the primary component of essential tea tree oil. Terpinen-4-ol was known for therapeutic effects, including antibacterial, antifungal, antiviral, and anti-inflammatory. Because terpenes are natural compounds, examining novel terpenes and investigating the therapeutic effects of terpenes represent responses to social demands for eco-friendly compounds. In this study, we investigated the catalytic activity of engineered CYP102A1 on terpinen-4-ol. Among CYP102A1 mutants tested here, the R47L/F81I/F87V/E143G/L188Q/N213S/E267V mutant showed the highest activity to terpinen-4-ol. Two major metabolites of terpinen-4-ol were generated by engineered CYP102A1. Characterization of major metabolites was confirmed by liquid chromatography-mass spectrometry (LC-MS), gas chromatography-MS, and nuclear magnetic resonance spectroscopy (NMR). Based on the LC-MS results, the difference in mass-to-charge ratio of an ion (m/z) between terpinen-4-ol and its major metabolites was 16. One major metabolite was defined as 1,4-dihydroxy-p-menth-2-ene by NMR. Given these results, we speculate that another major metabolite is also a mono-hydroxylated product. Taken together, we suggest that CYP102A1 can be applied to make novel terpene derivatives.


Assuntos
Sistema Enzimático do Citocromo P-450 , Terpenos , Humanos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Terpenos/química , Monoterpenos , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo
4.
Enzyme Microb Technol ; 171: 110328, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37751627

RESUMO

Rabeprazole is a common type of proton pump inhibitor (PPI) used to treat various peptic disorders. Unlike most PPI drugs, rabeprazole is spontaneously reduced to rabeprazole sulfide (thioether) when it is given to patients. As a result, rabeprazole sulfide is considered one of the active metabolites of rabeprazole. Rabeprazole sulfide is mainly metabolized to desmethyl rabeprazole sulfide by CYP2C19 and CYP2D6 in people. However, the pharmacological efficacy and safety of desmethyl rabeprazole sulfide have not yet been investigated. Its usage is challenging due to the high cost associated with the drug. In this study, we found CYP102A1 mutants that can produce desmethyl rabeprazole sulfide as a major metabolite of rabeprazole sulfide. The chemical characteristics of the major product were confirmed using high-performance liquid chromatography, LC-mass spectrometry, and nuclear magnetic resonance spectroscopy. CYP102A1 mutants R47L/F87V/L188Q, R47L/F87V/L188Q/A335V/Q359R, and R47L/F87V/L188Q/I254V/D351E showed kcat values of 39, 93, and 88 min-1, respectively, for O-desmethylation of rabeprazole sulfide. Furthermore, the highest concentration of desmethyl rabeprazole sulfide product from 2 mM rabeprazole sulfide at optimal conditions was obtained in bacterial whole-cell biotransformation with the R47L/F87V/L188Q mutant, reaching 0.63 mM at 4-h incubation. In conclusion, we present a platform that facilitates the efficient and sustainable production of the desmethylated product from rabeprazole sulfide for use in the biopharmaceutical industry.


Assuntos
Sistema Enzimático do Citocromo P-450 , Inibidores da Bomba de Prótons , Humanos , Rabeprazol , Sistema Enzimático do Citocromo P-450/metabolismo , Bactérias/metabolismo , Sulfetos
5.
Sci Rep ; 13(1): 5371, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005456

RESUMO

Axl is a tyrosine kinase receptor, a negative regulator for innate immune responses and inflammatory bowel disease (IBD). The gut microbiota regulates intestinal immune homeostasis, but the role of Axl in the pathogenesis of IBD through the regulation of gut microbiota composition remains unresolved. In this study, mice with DSS-induced colitis showed increased Axl expression, which was almost entirely suppressed by depleting the gut microbiota with antibiotics. Axl-/- mice without DSS administration exhibited increased bacterial loads, especially the Proteobacteria abundant in patients with IBD, significantly consistent with DSS-induced colitis mice. Axl-/- mice also had an inflammatory intestinal microenvironment with reduced antimicrobial peptides and overexpression of inflammatory cytokines. The onset of DSS-induced colitis occurred faster with an abnormal expansion of Proteobacteria in Axl-/- mice than in WT mice. These findings suggest that a lack of Axl signaling exacerbates colitis by inducing aberrant compositions of the gut microbiota in conjunction with an inflammatory gut microenvironment. In conclusion, the data demonstrated that Axl signaling could ameliorate the pathogenesis of colitis by preventing dysbiosis of gut microbiota. Therefore, Axl may act as a potential novel biomarker for IBD and can be a potential candidate for the prophylactic or therapeutic target of diverse microbiota dysbiosis-related diseases.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Camundongos , Animais , Disbiose/induzido quimicamente , Doenças Inflamatórias Intestinais/microbiologia , Proteobactérias , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo/microbiologia
6.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838843

RESUMO

Phloretin and its glycoside phlorizin have been reported to prevent obesity induced by high-fat diet (HFD), but the effect of 3-OH phloretin, a catechol metabolite of phloretin, has not been investigated. In this study, we investigated the anti-obesity effects of phloretin and 3-OH phloretin in HFD-fed mice. The body weight gain induced by HFD was more inhibited by administration of 3-OH phloretin than by phloretin. The increases in fat mass, white adipose tissue (WAT) weight, adipocyte size, and lipid accumulation by HFD were also remarkably inhibited by 3-OH phloretin and, to a lesser extent, by phloretin. The HFD-induced upregulation of chemokines and pro-inflammatory cytokines was suppressed by 3-OH phloretin, preventing M1 macrophages from infiltrating into WAT and thereby reducing WAT inflammation. 3-OH phloretin also showed a more potent effect than phloretin on suppressing the expression of adipogenesis regulator genes, such as PPARγ2, C/EBPα, FAS, and CD36. Fasting blood glucose and insulin levels increased by HFD were diminished by the administration of 3-OH phloretin, suggesting that 3-OH phloretin may alleviate obesity-induced insulin resistance. These findings suggested that 3-OH phloretin has the potential to be a natural bioactive compound that can be used in the prevention or treatment of obesity and insulin resistance.


Assuntos
Resistência à Insulina , Animais , Camundongos , Dieta Hiperlipídica , Floretina/farmacologia , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Inflamação/metabolismo , Macrófagos , Tecido Adiposo/metabolismo , Camundongos Endogâmicos C57BL
7.
J Inorg Biochem ; 242: 112165, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36848686

RESUMO

CYP102A1 is a promiscuous bacterial cytochrome P450 (CYP or P450) known for its diverse substrates and comparable activity with human P450 enzymes. The development of CYP102A1 peroxygenase activity can contribute significantly to human drug development and drug metabolite production. Peroxygenase has recently emerged as an alternative to a dependency of P450 on NADPH-P450 reductase and NADPH cofactor and gives more opportunity for practical application. However, the H2O2 dependency also leads to challenges regarding its practical application, in which the excessive H2O2 concentration causes the activation of the peroxygenases. Therefore, we need the optimization of H2O2 production to minimize oxidative inactivation. In this study, we report the CYP102A1 peroxygenase-catalyzed atorvastatin hydroxylation reaction with an enzymatic H2O2 generation using glucose oxidase. Random mutagenesis at the CYP102A1 heme domain was used to generate mutant libraries with high throughput screening of highly active mutants, which can pair with the in situ H2O2 generation. The setup of the CYP102A1 peroxygenase reaction was also possible for other statin drugs and could be developed to produce drug metabolites. We also found a relationship between enzyme inactivation and product formation during the catalytic reaction, supported by enzymatic in situ H2O2 supply. It can be suggested that the low product formation is due to enzyme inactivation.


Assuntos
Sistema Enzimático do Citocromo P-450 , Peróxido de Hidrogênio , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução , Catálise , Proteínas de Bactérias/química
8.
Enzyme Microb Technol ; 165: 110210, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764029

RESUMO

Niclosamide has been proposed as a possible candidate for a Covid-19 drug. However, the metabolites of niclosamide are difficult to investigate because they are usually not available commercially or they are quite expensive in the commercial market. In this study, the major metabolite of niclosamide in human liver microsomes (HLMs) was confirmed to be 3-OH niclosamide. Because the production of 3-OH niclosamide using HLMs has a slow turnover rate, a new method of producing niclosamide metabolite with an easier and highly cost-efficient method was thus conducted. Bacterial CYP102A1 (BM3) is one of the bacterial cytochrome P450s (CYPs) from Bacillus megaterium that structurally show similar activities to human CYPs. Here, the BM3 mutants were used to produce niclosamide metabolites and the metabolites were analyzed using high-performance liquid chromatography and LC-mass spectrometry. Among a set of mutants tested here, BM3 M14 mutant was the most active in producing 3-OH niclosamide, the major metabolite of niclosamide. Comparing BM3 M14 and HLMs, BM3 M14 production of 3-OH niclosamide was 34-fold higher than that of HLMs. Hence, the engineering of BM3 can be a cost-efficient method to produce 3-OH niclosamide.


Assuntos
COVID-19 , Niclosamida , Humanos , Niclosamida/metabolismo , Proteínas de Bactérias/metabolismo , COVID-19/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , Microssomos Hepáticos/metabolismo
9.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499645

RESUMO

The enzymatic transformation of various chemicals, especially using NADPH-dependent hydroxylase, into more soluble and/or high value-added products has steadily garnered increasing attention. However, the industrial application of these NADPH-dependent hydroxylases has been limited due to the high cost of the cofactor NADPH. As an alternative, enzymatic NADPH-regeneration systems have been developed and are frequently used in various fields. Here, we expressed and compared two recombinant isocitrate dehydrogenases (IDHs) from Corynebacterium glutamicum and Azotobacter vinelandii in Escherichia coli. Both enzymes were hyper-expressed in the soluble fraction of E. coli and were single-step purified to apparent homogeneity with yields of more than 850 mg/L. These enzymes also functioned well when paired with NADPH consumption systems. Specifically, NADPH was regenerated from NADP+ when an NADPH-consuming cytochrome P450 BM3 from Bacillus megaterium was incorporated. Therefore, both enzymes could be used as alternatives to the commonly used regeneration system for NADPH. These enzymes also have promising potential as genetic fusion partners with NADPH-dependent enzymes due to the monomeric nature of their quaternary structure, thereby resulting in self-sufficient biocatalysts via NADPH regeneration in a single polypeptide with NADPH-dependent activity.


Assuntos
Azotobacter vinelandii , Corynebacterium glutamicum , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , NADP/metabolismo , Isocitrato Desidrogenase/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Escherichia coli/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo
10.
Chem Sci ; 13(42): 12260-12279, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36382294

RESUMO

Enzymes are the catalyst of choice for highly selective reactions, offering nature-inspired approaches for sustainable chemical synthesis. Oxidative enzymes (e.g., monooxygenases, peroxygenases, oxidases, or dehydrogenases) catalyze a variety of enantioselective oxyfunctionalization and dehydrogenation reactions under mild conditions. To sustain the catalytic cycles of these enzymes, constant supply with or withdrawal of reducing equivalents (electrons) is required. Being redox by nature, photocatalysis appears a 'natural choice' to accomplish the electron-relay role, and many photoenzymatic oxidation reactions have been developed in the past years. In this contribution, we critically summarize the current developments in photoredoxbiocatalysis, highlight some promising concepts but also discuss the current limitations.

11.
Enzyme Microb Technol ; 160: 110069, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35696779

RESUMO

Tyrosinases, type-3 copper proteins responsible for melanin formation in various organisms, have considerable potential to produce bioactive catechol derivatives such as 3,4-dihydroxy-L-phenylalanine (L-DOPA). They catalyze the ortho-hydroxylation of L-tyrosine to L-DOPA via monophenolase activity and the subsequent oxidation of L-DOPA to dopaquinone through diphenolase activity, which then spontaneously converts to melanin. In this study, six novel Bacillus megaterium strains, GJ802, GJ803, DY801, DY802, DY804, and DY805, were isolated from rice straw in South Korea. The tyrosinases of the novel strains were cloned, purified, and characterized. They exhibited catalytic activity over a broad pH range and showed high thermal stability. In addition, a tyrosinase of the B. megaterium DY805 strain (DY805), having the highest monophenolase activity among the tyrosinases, was used to produce L-DOPA as a biocatalyst. DY805 produced 8.77 mg/L L-DOPA from 200 µM L-tyrosine (36.2 mg/L), with a yield of 23.3%. After the optimization of several parameters for L-DOPA production, DY805 could produce up to 264 mg/L L-DOPA (30-fold increase), with a yield of 97.2% from 1500 µM L-tyrosine (272 mg/L). Taken together, these novel tyrosinases could be considered useful biocatalysts in L-DOPA production and other biotechnology fields.


Assuntos
Bacillus megaterium , Monofenol Mono-Oxigenase , Bacillus megaterium/genética , Levodopa , Melaninas/metabolismo , Monofenol Mono-Oxigenase/química , Tirosina/metabolismo
12.
Trends Biotechnol ; 40(2): 166-179, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34243985

RESUMO

Plastic contamination currently threatens a wide variety of ecosystems and presents damaging repercussions and negative consequences for many wildlife species. Sustainable plastic waste management is an important approach to environmental protection and a necessity in the current life cycle of plastics in nature. Plastic biodegradation by microorganisms is a notable possible solution. This opinion article includes a proposal to use hypothetical P450 enzymes with an engineered active site as potent trigger biocatalysts to biodegrade polyethylene (PE) via in-chain hydroxylation into smaller products of linear aliphatic alcohols and alkanoic acids based on cascade enzymatic reactions. Furthermore, we propose the adoption of P450 into plastic-eating synthetic bacteria for PE biodegradation. This strategy can be applicable to other dense plastics, such as polypropylene (PP) and polystyrene (PS).


Assuntos
Ecossistema , Plásticos , Bactérias/metabolismo , Biodegradação Ambiental , Sistema Enzimático do Citocromo P-450/metabolismo , Plásticos/metabolismo
13.
Pharmaceutics ; 15(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36678652

RESUMO

Tenatoprazole, a newly developed proton pump inhibitor candidate, was developed as an acid inhibitor for gastric acid hypersecretion disorders such as gastric ulcer and reflux esophagitis. It is known that tenatoprazole is metabolized to three major metabolites of 5'-hydroxy tenatoprazole, tenatoprazole sulfide, and tenatoprazole sulfone in human liver, primarily catalyzed by CYPs 2C19 and 3A4. While CYP2C19 prefers the hydroxylation of tenatoprazole at C-5' position, CYP3A4 is mainly involved in sulfoxidation reaction to make tenatoprazole sulfone. Tenatoprazole sulfide is a major human metabolite of tenatoprazole and is formed spontaneously and non-enzymatically from tenatoprazole. However, its metabolic fate in the human liver is not fully known. Furthermore, no systematic metabolic study has been performed to study tenatoprazole or tenatoprazole sulfide. Here, we studied the functions of human cytochromes P450 in the metabolic pathway of tenatoprazole and tenatoprazole sulfide by using recombinant human P450s and human liver microsomes. Both CYP 2C19 and CYP3A4 showed distinct regioselective and stereospecific monooxygenation activities toward tenatoprazole and tenatoprazole sulfide. Furthermore, a new major metabolite of tenatoprazole sulfide was found, 1'-N-oxy-5'-hydroxytenatoprzole sulfide, which has never been reported. In conclusion, the metabolic fates of tenatoprazole and tenatoprazole sulfide should be considered in the clinical use of tenatoprazole.

14.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34681205

RESUMO

Statins inhibit the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMG-CoA reductase), which is the rate-limiting enzyme in cholesterol biosynthesis. Statin therapy reduces morbidity and mortality in those who are at high risk of cardiovascular disease. Monacolin J is a statin compound, which is an intermediate in the lovastatin biosynthesis pathway, in the fungus Aspergillus terreus. It is also found in red yeast rice, which is made by culturing rice with the yeast Monascus purpureus. Monacolin J has a hydroxyl substituent at position C'-8 of monacolin L. Here, a new statin derivative from monacolin J was made through the catalysis of CYP102A1 from Bacillus megaterium. A set of CYP102A1 mutants of monacolin J hydroxylation with high catalytic activity was screened. The major hydroxylated product was C-6'a-hydroxymethyl monacolin J, whose structure was confirmed using LC-MS and NMR analysis. The C-6'a-hydroxymethyl monacolin J has never been reported before. It showed a greater ability to inhibit HMG-CoA reductase than the monacolin J substrate itself. Human liver microsomes and human CYP3A4 also showed the ability to catalyze monacolin J in producing the same product of the CYP102A1-catalyzed reaction. This result motivates a new strategy for the development of a lead for the enzymatic and chemical processes to develop statin drug candidates.

15.
J Hazard Mater ; 416: 126239, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492990

RESUMO

Polystyrene (PS), a major plastic waste, is difficult to biodegrade due to its unique chemical structure that comprises phenyl moieties attached to long linear alkanes. In this study, we investigated the biodegradation of PS by mesophilic bacterial cultures obtained from various soils in common environments. Two new strains, Pseudomonas lini JNU01 and Acinetobacter johnsonii JNU01, were specifically enriched in non-carbonaceous nutrient medium, with PS as the only source of carbon. Their growth after culturing in basal media increased more than 3-fold in the presence of PS. Fourier transform infrared spectroscopy analysis, used to confirm the formation of hydroxyl groups and potentially additional chemical bond groups, showed an increase in the amount of oxidized PS samples. Moreover, field emission scanning electron microcopy analysis confirmed PS biodegradation by biofilms of the screened microbes. Water contact angle measurement additionally offered insights into the increased hydrophilic characteristics of PS films. Bioinformatics and transcriptional analysis of A. johnsonii JNU01 revealed alkane-1-monooxygenase (AlkB) to be involved in PS biodegradation, which was confirmed by the hydroxylation of PS using recombinant AlkB. These results provide significant insights into the discovery of novel functions of Pseudomonas sp. and Acinetobacter sp., as well as their potential as PS decomposers.


Assuntos
Poliestirenos , Solo , Acinetobacter , Bactérias , Biodegradação Ambiental , Pseudomonas
16.
Antioxidants (Basel) ; 10(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34439575

RESUMO

Phlorizin is the most abundant glucoside of phloretin from the apple tree and its products. Phlorizin and its aglycone phloretin are currently considered health-beneficial polyphenols from apples useful in treating hyperglycemia and obesity. Recently, we showed that phloretin could be regioselectively hydroxylated to make 3-OH phloretin by Bacillus megaterium CYP102A1 and human P450 enzymes. The 3-OH phloretin has a potent inhibitory effect on differentiating 3T3-L1 preadipocytes into adipocytes and lipid accumulation. The glucoside of 3-OH phloretin would be a promising agent with increased bioavailability and water solubility compared with its aglycone. However, procedures to make 3-OH phlorizin, a glucoside of 3-OH phloretin, using chemical methods, are not currently available. Here, a biocatalytic strategy for the efficient synthesis of a possibly valuable hydroxylated product, 3-OH phlorizin, was developed via CYP102A1-catalyzed regioselective hydroxylation. The production of 3-OH phlorizin by CYP102A1 was confirmed by HPLC and LC-MS spectroscopy in addition to enzymatic removal of its glucose moiety for comparison to 3-OH phloretin. Taken together, in this study, we found a panel of mutants from B. megaterium CYP102A1 could catalyze regioselective hydroxylation of phlorizin to produce 3-OH phlorizin, a catechol product.

17.
ChemSusChem ; 14(15): 3030, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34272832

RESUMO

Invited for this month's cover is the joint research group of Prof. Chan Beum Park at the Korea Advanced Institute of Science and Technology (KAIST) and Prof. Chul-Ho Yun at the Chonnam National University (CNU). The image shows how the use of a natural photosensitizer, flavin mononucleotide, and visible light can lead to a cost-effective, green, and sustainable process for P450-catalyzed reactions in a whole-cell system. The Communication itself is available at 10.1002/cssc.202100944.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Mononucleotídeo de Flavina/química , Fármacos Fotossensibilizantes/química , Catálise , Clorzoxazona/química , Escherichia coli/metabolismo , Hidroxilação , Luz , Nitrofenóis/química , Oxirredução , Fotossíntese , Energia Solar
18.
Nanomaterials (Basel) ; 11(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209077

RESUMO

Bottom-up micropatterning or nanopatterning can be viewed as the localization of target molecules to the desired area of a surface. A majority of these processes rely on the physical adsorption of ink-like molecules to the paper-like surface, resulting in unstable immobilization of the target molecules owing to their noncovalent linkage to the surface. Herein, successive single nick-sealing facilitated the covalent immobilization of individual DNA molecules at defined positions on a dendron-coated silicon surface using atomic force microscopy. The covalently-patterned ssDNA was visualized when the streptavidin-coated gold nanoparticles bound to the biotinylated DNA. The successive covalent positioning of the target DNA under ambient conditions may facilitate the bottom-up construction of DNA-based durable nanostructures, nanorobots, or memory system.

19.
ChemSusChem ; 14(15): 3054-3058, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34085413

RESUMO

Photobiocatalysis is a green platform for driving redox enzymatic reactions using solar energy, not needing high-cost cofactors and redox partners. Here, a visible light-driven whole-cell platform for human cytochrome P450 (CYP) photobiocatalysis was developed using natural flavins as a photosensitizer. Photoexcited flavins mediate NADPH/reductase-free, light-driven biocatalysis by human CYP2E1 both in vitro and in the whole-cell systems. In vitro tests demonstrated that the photobiocatalytic activity of CYP2E1 is dependent on the substrate type, the presence of catalase, and the acid type used as a sacificial electron donor. A protective effect of catalase was found against the inactivation of CYP2E1 heme by H2 O2 and the direct transfer of photo-induced electrons to the heme iron not by peroxide shunt. Furthermore, the P450 photobiocatalysis in whole cells containing human CYPs 1A1, 1A2, 1B1, and 3A4 demonstrated the general applicability of the solar-powered, flavin-mediated P450 photobiocatalytic system.

20.
FASEB J ; 35(4): e21479, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710680

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is a cell surface receptor expressed on macrophages, microglial cells, and pre-osteoclasts, and that participates in diverse cellular function, including inflammation, bone homeostasis, neurological development, and coagulation. In spite of the indispensable role of the TREM2 protein in the maintenance of immune homeostasis and osteoclast differentiation, the exact ligand for TREM2 has not yet been identified. Here, we report a putative TREM2 ligand which is secreted from MC38 cells and identified as a cyclophilin A (CypA). A specific interaction between CypA and TREM2 was shown at both protein and cellular levels. Exogenous CypA specifically interacted and co-localized with TREM2 in RAW264.7 cells, and the physical interactions were shown to regulate TREM2 signaling transduction. The Pro144 residue in the extracellular domain of TREM2 was found to be the specific binding site of CypA. When considered together, this provides evidence that CypA interacts specifically with TREM2 as a potent ligand.


Assuntos
Ciclofilina A/metabolismo , Ligantes , Microglia/metabolismo , Células Mieloides/metabolismo , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Humanos , Macrófagos/metabolismo , Osteoclastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA