Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacotherapy ; 44(1): 77-86, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37728152

RESUMO

INTRODUCTION: Cefazolin is the leading antibiotic used to prevent surgical site infections worldwide. Consensus guidelines recommend adjustment of the cefazolin dose above and below 120 kg without regard to body composition. Algorithms exist to repurpose radiologic data into body composition (morphomics) and inform dosing decisions in obesity. OBJECTIVES: To compare the current standard of body weight to morphomic measurements as covariates of cefazolin pharmacokinetics and aid dose stratification of cefazolin in patients with obesity undergoing colorectal surgery. METHODS: This prospective study measured cefazolin plasma, fat, and colon tissue concentrations in colorectal surgery patients in order to develop a morphomics-informed population pharmacokinetic (PopPK) model to guide dose adjustments. A physiologically-based pharmacokinetic (PBPK) model was also constructed to inform tissue partitioning in morbidly obese patients (n = 21, body mass index ≥35 kg/m2 with one or more co-morbid conditions). RESULTS: Morphomics and pharmacokinetic data were available in 58 patients with a median [min, max] weight and age of 95.9 [68.5, 148.8] kg and 55 [25, 79] years, respectively. The plasma-to-subcutaneous fat partition coefficient was predicted to be 0.072 and 0.060 by the PopPK and PBPK models, respectively. The estimated creatinine clearance (eCLcr ) and body depth at the third lumbar vertebra (body depth_L3) were identified as covariates of cefazolin exposure. The probability of maintaining subcutaneous fat concentrations above 2 µg/mL for 100% of a 4-h surgical period was below 90% when eCLcr ≥105 mL/min and body depth_L3 ≥ 300 mm and less sensitive to the rate of infusion between 5 and 60 min. CONCLUSIONS: Kidney function and morphomics were more informative than body weight as covariates of cefazolin target site exposure. Data from more diverse populations, consensus on target cefazolin exposure, and comparative studies are needed before a change in practice can be implemented.


Assuntos
Cefazolina , Obesidade Mórbida , Humanos , Cefazolina/farmacocinética , Obesidade Mórbida/cirurgia , Estudos Prospectivos , Antibioticoprofilaxia , Antibacterianos , Infecção da Ferida Cirúrgica/prevenção & controle
2.
Science ; 381(6654): eadg9091, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37440661

RESUMO

The historically important phage ΦX174 kills its host bacteria by encoding a 91-residue protein antibiotic called protein E. Using single-particle electron cryo-microscopy, we demonstrate that protein E bridges two bacterial proteins to form the transmembrane YES complex [MraY, protein E, sensitivity to lysis D (SlyD)]. Protein E inhibits peptidoglycan biosynthesis by obstructing the MraY active site leading to loss of lipid I production. We experimentally validate this result for two different viral species, providing a clear model for bacterial lysis and unifying previous experimental data. Additionally, we characterize the Escherichia coli MraY structure-revealing features of this essential enzyme-and the structure of the chaperone SlyD bound to a protein. Our structures provide insights into the mechanism of phage-mediated lysis and for structure-based design of phage therapeutics.


Assuntos
Antibacterianos , Bacteriólise , Bacteriófago phi X 174 , Proteínas de Escherichia coli , Escherichia coli , Proteínas Virais , Antibacterianos/metabolismo , Bacteriófago phi X 174/genética , Bacteriófago phi X 174/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Imagem Individual de Molécula , Microscopia Crioeletrônica
3.
Br J Clin Pharmacol ; 89(3): 1207-1210, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36367379

RESUMO

The goal of this study was to use a model kidney function clearance-dependent drug (vancomycin) to understand the gain or loss of precision in dosing with use of serum creatinine (Scr ), serum cystatin C (Scys ) and race and nonrace-based equations of the estimated glomerular filtration rate (eGFR). In this study of hospitalized patients, we compared Scr , Scys and their combination to estimate kidney function and vancomycin clearance. The nonrace-based Scys eGFR model outperformed other clearance models and improved the probability of target attainment by 15%. When Scys is not available, we show that the new 2021 CKD-EPI eGFRcr equation (no race factor) performs as well as the current conventional approach. This improvement in model performance does not negate the need for individualized dosing but exemplifies the need to remove race as a factor of kidney-function dose adjustment.


Assuntos
Insuficiência Renal Crônica , Vancomicina , Humanos , Taxa de Filtração Glomerular , Creatinina , Cistatina C
4.
J Med Chem ; 63(19): 10855-10878, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32886511

RESUMO

Capuramycin displays a narrow spectrum of antibacterial activity by targeting bacterial translocase I (MraY). In our program of development of new N-acetylglucosaminephosphotransferase1 (DPAGT1) inhibitors, we have identified that a capuramycin phenoxypiperidinylbenzylamide analogue (CPPB) inhibits DPAGT1 enzyme with an IC50 value of 200 nM. Despite a strong DPAGT1 inhibitory activity, CPPB does not show cytotoxicity against normal cells and a series of cancer cell lines. However, CPPB inhibits migrations of several solid cancers including pancreatic cancers that require high DPAGT1 expression in order for tumor progression. DPAGT1 inhibition by CPPB leads to a reduced expression level of Snail but does not reduce E-cadherin expression level at the IC50 (DPAGT1) concentration. CPPB displays a strong synergistic effect with paclitaxel against growth-inhibitory action of a patient-derived pancreatic adenocarcinoma, PD002: paclitaxel (IC50: 1.25 µM) inhibits growth of PD002 at 0.0024-0.16 µM in combination with 0.10-2.0 µM CPPB (IC50: 35 µM).


Assuntos
Aminoglicosídeos/farmacologia , Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Neoplasias/patologia , Aminoglicosídeos/química , Antineoplásicos/química , Linhagem Celular Tumoral , Sinergismo Farmacológico , Inibidores Enzimáticos/química , Humanos , Paclitaxel/farmacologia , Fatores de Transcrição da Família Snail/antagonistas & inibidores , Relação Estrutura-Atividade
5.
ACS Infect Dis ; 6(6): 1501-1516, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31769280

RESUMO

MurG (uridine diphosphate-N-acetylglucosamine/N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase) is an essential bacterial glycosyltransferase that catalyzes the N-acetylglucosamine (GlcNAc) transformation of lipid I to lipid II during peptidoglycan biosynthesis. Park's nucleotide has been a convenient biochemical tool to study the function of MraY (phospho-MurNAc-(pentapeptide) translocase) and MurG; however, no fluorescent probe has been developed to differentiate individual processes in the biotransformation of Park's nucleotide to lipid II via lipid I. Herein, we report a robust assay of MurG using either the membrane fraction of a M. smegmatis strain or a thermostable MraY and MurG of Hydrogenivirga sp. as enzyme sources, along with Park's nucleotide or Park's nucleotide-Nε-C6-dansylthiourea and uridine diphosphate (UDP)-GlcN-C6-FITC as acceptor and donor substrates. Identification of both the MraY and MurG products can be performed simultaneously by HPLC in dual UV mode. Conveniently, the generated lipid II fluorescent analogue can also be quantitated via UV-Vis spectrometry without the separation of the unreacted lipid I derivative. The microplate-based assay reported here is amenable to high-throughput MurG screening. A preliminary screening of a collection of small molecules has demonstrated the robustness of the assays and resulted in rediscovery of ristocetin A as a strong antimycobacterial MurG and MraY inhibitor.


Assuntos
Glicosiltransferases , Transferases , Antibacterianos , Fluorescência
6.
MethodsX ; 6: 2305-2321, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31667130

RESUMO

Immunotherapy that targets N-linked glycans has not yet been developed due in large part to the lack of specificity of N-linked glycans between normal and malignant cells. N-Glycan chains are synthesized by the sequential action of glycosyl transferases in the Golgi apparatus. It is an overwhelming task to discover drug-like inhibitors of glycosyl transferases that block the synthesis of specific branching processes in cancer cells, killing tumor cells selectively. It has long been known that N-glycan biosynthesis can be inhibited by disruption of the first committed enzyme, dolichyl-phosphate N-acetylglucosaminephosphotransferase 1 (DPAGT1). Selective DPAGT1 inhibitors have the promising therapeutic potential for certain solid cancers that require increased branching of N-linked glycans in their growth progressions. Recently, we discovered that an anti-Clostridium difficile molecule, aminouridyl phenoxypiperidinbenzyl butanamide (APPB) showed DPAGT1 inhibitory activity with the IC50 value of 0.25 µM. It was confirmed that APPB inhibits N-glycosylation of ß-catenin at 2.5 nM concentration. A sharp difference between APPB and tunicamycin was that the hemolytic activity of APPB is significantly attenuated (IC50 > 200 µM RBC). Water solubility of APPB is >350-times greater than that of tunicamycin (78.8 mg/mL for APPB, <0.2 mg/mL for tunicamycin). A novel DPAGT1 inhibitor, APPB selectively inhibits growth of the solid tumors (e.g. KB, LoVo, SK-OV-3, MDA-MB-432S, HCT116, Panc-1, and AsPC-1) at low µM concentrations, but does not inhibit growth of a leukemia cell (L1210) and the healthy cells (Vero and HPNE) at these concentrations. In vitro metabolic stability using rat liver microsomes indicated that a half-life (t 1/2) of APPB is sufficiently long (>60 min) for in vivo studies (PK/PD, safety profiles, and in vivo efficacy) using animal models. We have refined all steps in the previously reported synthesis for APPB for larger-scale. This article summarizes protocols of gram-scale synthesis of APPB and its physicochemical data, and a convenient DPAGT1 assay. •Remember that the abstract is what readers see first in electronic abstracting & indexing services.•This is the advertisement of your article. Make it interesting, and easy to be understood.•Be accurate and specific, keep it as brief as possible.

7.
ACS Omega ; 3(2): 1726-1739, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29503973

RESUMO

The spectrum of antibacterial activity for the nucleoside antibiotic FR-900493 (1) can be extended by chemical modifications. We have generated a small focused library based on the structure of 1 and identified UT-17415 (9), UT-17455 (10), UT-17460 (11), and UT-17465 (12), which exhibit anti-Clostridium difficile growth inhibitory activity. These analogues also inhibit the outgrowth of C. difficile spores at 2× minimum inhibitory concentration. One of these analogues, 11, relative to 1 exhibits over 180-fold and 15-fold greater activity against the enzymes, phospho-MurNAc-pentapeptide translocase (MraY) and polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA), respectively. The phosphotransferase inhibitor 11 displays antimicrobial activity against several tested bacteria including Bacillus subtilis, Clostridium spp., and Mycobacterium smegmatis, but no growth inhibitory activity is observed against the other Gram-positive and Gram-negative bacteria. The selectivity index (Vero cell cytotoxicity/C. difficileantimicrobial activity) of 11 is approximately 17, and 11 does not induce hemolysis even at a 100 µM concentration.

8.
Proc Natl Acad Sci U S A ; 112(43): 13144-9, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26460035

RESUMO

Interactions between polypeptide chains containing amino acid residues with opposite absolute configurations have long been a source of interest and speculation, but there is very little structural information for such heterochiral associations. The need to address this lacuna has grown in recent years because of increasing interest in the use of peptides generated from d amino acids (d peptides) as specific ligands for natural proteins, e.g., to inhibit deleterious protein-protein interactions. Coiled-coil interactions, between or among α-helices, represent the most common tertiary and quaternary packing motif in proteins. Heterochiral coiled-coil interactions were predicted over 50 years ago by Crick, and limited experimental data obtained in solution suggest that such interactions can indeed occur. To address the dearth of atomic-level structural characterization of heterochiral helix pairings, we report two independent crystal structures that elucidate coiled-coil packing between l- and d-peptide helices. Both structures resulted from racemic crystallization of a peptide corresponding to the transmembrane segment of the influenza M2 protein. Networks of canonical knobs-into-holes side-chain packing interactions are observed at each helical interface. However, the underlying patterns for these heterochiral coiled coils seem to deviate from the heptad sequence repeat that is characteristic of most homochiral analogs, with an apparent preference for a hendecad repeat pattern.


Assuntos
Conformação Proteica , Proteínas/química , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
9.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 12): 2506-12, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24311591

RESUMO

The human Pin1 WW domain is a small autonomously folding protein that has been useful as a model system for biophysical studies of ß-sheet folding. This domain has resisted previous attempts at crystallization for X-ray diffraction studies, perhaps because of intrinsic conformational flexibility that interferes with the formation of a crystal lattice. Here, the crystal structure of the human Pin1 WW domain has been obtained via racemic crystallization in the presence of small-molecule additives. Both enantiomers of a 36-residue variant of the Pin1 WW domain were synthesized chemically, and the L- and D-polypeptides were combined to afford diffracting crystals. The structural data revealed packing interactions of small carboxylic acids, either achiral citrate or a D,L mixture of malic acid, with a mobile loop region of the WW-domain fold. These interactions with solution additives may explain our success in crystallization of this protein racemate. Molecular-dynamics simulations starting from the structure of the Pin1 WW domain suggest that the crystal structure closely resembles the conformation of this domain in solution. The structural data presented here should provide a basis for further studies of this important model system.


Assuntos
Excipientes/química , Peptidilprolil Isomerase/química , Sequência de Aminoácidos , Cristalização/métodos , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Peptidilprolil Isomerase de Interação com NIMA , Conformação Proteica , Estrutura Terciária de Proteína
10.
J Am Chem Soc ; 134(17): 7317-20, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22524614

RESUMO

We report a new method for preorganization of α/ß-peptide helices, based on the use of a dense array of acidic and basic side chains. Previously we have used cyclically constrained ß residues to promote α/ß-peptide helicity; here we show that an engineered ion pair array can be comparably effective, as indicated by mimicry of the CHR domain of HIV protein gp41. The new design is effective in biochemical and cell-based infectivity assays; however, the resulting α/ß-peptide is susceptible to proteolysis. This susceptibility was addressed via introduction of a few cyclic ß residues near the cleavage site, to produce the most stable, effective α/ß-peptide gp41 CHR analogue identified. Crystal structures of an α- and α/ß-peptide (each involved in a gp41-mimetic helix bundle) that contain the dense acid/base residue array manifest disorder in the ionic side chains, but there is little side-chain disorder in analogous α- and α/ß-peptide structures with a sparser ionic side-chain array. These observations suggest that dense arrays of complementary acidic and basic residues can provide conformational stabilization via Coulombic attractions that do not require entropically costly ordering of side chains.


Assuntos
Proteína gp41 do Envelope de HIV/química , HIV/química , Peptídeos/química , Sequência de Aminoácidos , Cristalografia por Raios X , HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA