Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138786

RESUMO

Plastic shrinkage cracking is a complex and multifaceted process that occurs in the period between placement and the final setting. During this period, the mixture is viscoplastic in nature and therefore possesses rheological properties. The investigation of the relationship between rheological behavior and its propensity to undergo cracking during the plastic phase presents an intriguing subject of study. However, many factors influence plastic cracking, and the corresponding interaction of its effects is complex in nature. This study aimed to evaluate the impact of rheological and physicomechanical properties on the occurrence of plastic cracking in high-performance shotcrete containing various supplementary cementitious materials. To achieve this, plastic cracking was evaluated employing the ASTM C 1579 standard and a smart crack viewer FCV-30, and the rheological parameters were controlled using an ICAR rheometer. In addition, a study was conducted to assess the strength development and fresh properties. Further, a relationship was established via statistical evaluation, and the best predicting models were selected. According to the study results, it can be concluded that high-yield stress and low plastic viscosity for colloidal silica mixtures are indicators of plastic cracking resistance owing to improved fresh microstructure and accelerated hydration reaction. However, earlier strength development and the presence of a water-reducing admixture allowed mixtures containing silica fume to achieve crack reduction. A higher indicator of yield stress is an indicator of the capillary pressure development of these mixtures. In addition, a series containing ultrafine fly ash (having high flow resistance and torque viscosity) exhibited a risk of early capillary pressure build-up and a decrease in strength characteristics, which could be stabilized with the addition of colloidal silica. Consequently, the mixture containing both silica fume and colloidal silica exhibited the best performance. Thus, the results indicated that rheological characteristics, compressive strength, and water-reducer content can be used to control the plastic shrinkage cracking of shotcrete.

2.
Materials (Basel) ; 15(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35057146

RESUMO

There have been numerous studies on shotcrete based on strength and durability. However, few studies have been conducted on rheological characteristics, which are very important parameters for evaluating the pumpability and shootability of shotcrete. In those studies, silica fume has been generally used as a mineral admixture to simultaneously enhance the strength, durability, pumpability, and shootability of shotcrete. Silica fume is well-known to significantly increase the viscosity of a mixture and to prevent material sliding at the receiving surface when used in shotcrete mixtures. However, the use of silica fume in shotcrete increases the possibility of plastic shrinkage cracking owing to its very high fineness, and further, silica fume increases the cost of manufacturing the shotcrete mixture because of its cost and handling. Colloidal silica is a new material in which nano-silica is dispersed in water, and it could solve the above-mentioned problems. The purpose of this research is to develop high-performance shotcrete with appropriate levels of strength and workability as well as use colloidal silica for normal structures without a tunnel structure. Thereafter, the workability of shotcrete with colloidal silica (2, 3, and 4%) was evaluated with a particle size of 10 nm and silica fume replacement (4 and 7%) of cement. In this study, an air-entraining agent for producing high-performance shotcrete was also used. The rheological properties of fresh shotcrete mixtures were estimated using an ICAR rheometer and the measured rheological parameters such as flow resistance and torque viscosity were correlated with the workability and shootability. More appropriate results will be focusing on the Bingham model properties such that the main focus here is to compare all data using the Bingham model and its performance. The pumpability, shootability, and build-up thickness characteristics were also evaluated for the performance of the shotcrete. This research mainly focuses on the Bingham model for absolute value because it creates an exact linear line in a graphical analysis, which provides more appropriate results for measuring the shotcrete performance rather than ICAR rheometer relative data.

3.
Materials (Basel) ; 14(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530586

RESUMO

In this study, cement minerals, aluminates, and alkali-free accelerators incorporated with steel fiber were used to scrutinize the influence of accelerating agents on the long-term performance of tunneling shotcrete. Performance tests were identified based on the core compressive strength of mix shotcrete specimens with different types of accelerating agents throughout timeframes of 1, 3, 6, and 12 months. Here, 37 kg of steel fiber was incorporated into the cement mineral and aluminate mixes, and 40 kg of steel fiber was incorporated in an alkali-free mix for the shotcrete mix design. The KSF 2784 and ASTM 214 standards were followed for specimen fabrication and core cutting. For all specimens, shotcrete test panels of 250 × 600 × 500 mm were manufactured for core compressive strength tests conducted using 100, 75 and 55 mm diameter cylindrical molds and a length-to-diameter ratio of 2. The 1-month compressive strength of all test variables satisfied the Korea Expressway Co. standard of 21 MPa. The core compressive strength of the shotcrete specimens showed a tendency to increase with age, but a strength reduction occurred in 6 months and increased again at 12 months. Moreover, the impact of the diameter changes in the shotcrete core specimens was analyzed based on the mixing. For 12 months, a large increase in the core compressive strength occurred, particularly in the alkali-free specimens. The comparison also focused on the relative strength compared with a cast concrete mold and shotcrete core specimens. It is necessary to use alkali-free accelerators considering the long-term performance of tunnels and worker safety.

4.
Materials (Basel) ; 13(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302531

RESUMO

This study analyzed the effect of accelerating agents, such as aluminate, cement mineral, and alkali-free accelerators, on the long-term performance of steel-fiber-reinforced shotcrete. The shotcrete performance was studied based on the type and amount of steel fiber added. Performance tests were performed to identify the accelerator providing better long-term performance to the steel-fiber-reinforced shotcrete. Changes in strength and flexural performance over time were investigated. The compressive strength and flexural strength tests on 1-, 3-, 6-, 12-, and 24-month-old test specimens were performed, wherein 37 kg of steel fiber was added to the cement mineral and aluminate mixes, and 40 kg of steel fiber was added to the alkali-free mix. The 1-month compressive strength result of all the test variables satisfied the Korea Expressway Corporation standard. The compressive strength of the cast concrete and shotcrete specimens increased with age, demonstrating a strength reduction, particularly in the 24-month-old shotcrete specimens. Thus, the shotcrete performance may deteriorate in the long-term. In the 24-month-old specimen, substantial flexural strength reduction was observed, particularly in the aluminate and alkali-free specimens. The relative strength of the specimens was compared with that of the cast concrete mold specimens. The results suggest the use of alkali-free accelerators, considering the long-term performance of tunnels and safety of workers. Moreover, increasing the steel fiber performance rather than the amount of low-performance steel fiber must be considered.

5.
Materials (Basel) ; 13(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906258

RESUMO

The compressive stress of concrete is used as a design variable for reinforced concrete structures in design standards. However, as the performance-based design is being used with increasing varieties and strengths of concrete and reinforcement bars, mechanical properties other than the compressive stress of concrete are sometimes used as major design variables. In particular, the evaluation of the mechanical properties of concrete is crucial when using fiber-reinforced concrete. Studies of high volume fractions in established compressive behavior prediction equations are insufficient compared to studies of conventional fiber-reinforced concrete. Furthermore, existing prediction equations for the mechanical properties of high-performance fiber-reinforced cementitious composite and high-strength concrete have limitations in terms of the strength and characteristics of contained fibers (diameter, length, volume fraction) even though the stress-strain relationship is determined by these factors. Therefore, this study developed a high-performance slurry-infiltrated fiber-reinforced cementitious composite that could prevent the fiber ball phenomenon, a disadvantage of conventional fiber-reinforced concrete, and maximize the fiber volume fraction. Then, the behavior characteristics under compressive stress were analyzed for fiber volume fractions of 4%, 5%, and 6%.

6.
Polymers (Basel) ; 9(11)2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-30965900

RESUMO

This study focuses on investigating the effects of particle size and cross-linking density on the hygral behavior of superabsorbent polymers (SAPs), which are increasingly used as an internal curing material for high-performance concrete. Four SAPs with different mean particle diameters and cross-linking densities were tested under controlled wetting and drying conditions to measure free absorption and desorption kinetics. Absorption capacities of SAPs under actual mixing conditions were additionally measured and verified by means of mortar flow and semi-adiabatic hydration heat measurements. In addition, the effects of SAP type and dosage (i.e., 0.2, 0.4, and 0.6% by mass of cement) on the mechanical properties of hardened mortar were assessed. The results indicated that: (1) the absorption capacity increased with decreased cross-linking density and increased particle size under both load-free and mixing conditions; and (2) the greater the cross-linking density and the lower the particle size, the shorter the desorption time. It was also confirmed that while the early-age mechanical properties were more related with the gel strength of swollen SAP, the later-age mechanical properties were more affected by the water retention capacity and spatial distribution of SAP in the matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA