Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Death Dis ; 14(11): 726, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938564

RESUMO

Triple-negative breast cancer (TNBC) is a subtype of breast cancer associated with metastasis, high recurrence rate, and poor survival. The basic helix-loop-helix transcription factor SHARP1 (Split and Hairy-related Protein 1) has been identified as a suppressor of the metastatic behavior of TNBC. SHARP1 blocks the invasive phenotype of TNBC by inhibiting hypoxia-inducible factors and its loss correlates with poor survival of breast cancer patients. Here, we show that SHARP1 is an unstable protein that is targeted for proteasomal degradation by the E3 ubiquitin ligase complex SCFßTrCP. SHARP1 recruits ßTrCP via a phosphodegron encompassing Ser240 and Glu245 which are required for SHARP1 ubiquitylation and degradation. Furthermore, mice injected with TNBC cells expressing the non-degradable SHARP1(S240A/E245A) mutant display reduced tumor growth and increased tumor-free survival. Our study suggests that targeting the ßTrCP-dependent degradation of SHARP1 represents a therapeutic strategy in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/genética , Proteínas Contendo Repetições de beta-Transducina/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fenótipo , Sinapsinas
2.
Cell Rep ; 31(7): 107664, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433973

RESUMO

Cullin-RING ligases (CRLs) control key cellular processes by promoting ubiquitylation of a multitude of soluble cytosolic and nuclear proteins. Subsets of CRL complexes are recruited and activated locally at cellular membranes; however, few CRL functions and substrates at these distinct cellular compartments are known. Here, we use a proteomic screen to identify proteins that are ubiquitylated at cellular membranes and found that Lunapark, an endoplasmic reticulum (ER)-shaping protein localized to ER three-way junctions, is ubiquitylated by the CRL3KLHL12 ubiquitin ligase. We demonstrate that Lunapark interacts with mechanistic target of rapamycin complex-1 (mTORC1), a central cellular regulator that coordinates growth and metabolism with environmental conditions. We show that mTORC1 binds Lunapark specifically at three-way junctions, and lysosomes, where mTORC1 is activated, make contact with three-way junctions where Lunapark resides. Inhibition of Lunapark ubiquitylation results in neurodevelopmental defects indicating that KLHL12-dependent ubiquitylation of Lunapark is required for normal growth and development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Culina/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Ubiquitinação , Peixe-Zebra
3.
EMBO J ; 38(20): e101430, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31475738

RESUMO

E2F7 and E2F8 act as tumor suppressors via transcriptional repression of genes involved in S-phase entry and progression. Previously, we demonstrated that these atypical E2Fs are degraded by APC/CCdh1 during G1 phase of the cell cycle. However, the mechanism driving the downregulation of atypical E2Fs during G2 phase is unknown. Here, we show that E2F7 is targeted for degradation by the E3 ubiquitin ligase SCFcyclin F during G2. Cyclin F binds via its cyclin domain to a conserved C-terminal CY motif on E2F7. An E2F7 mutant unable to interact with SCFcyclin F remains stable during G2. Furthermore, SCFcyclin F can also interact and induce degradation of E2F8. However, this does not require the cyclin domain of SCFcyclin F nor the CY motifs in the C-terminus of E2F8, implying a different regulatory mechanism than for E2F7. Importantly, depletion of cyclin F causes an atypical-E2F-dependent delay of the G2/M transition, accompanied by reduced expression of E2F target genes involved in DNA repair. Live cell imaging of DNA damage revealed that cyclin F-dependent regulation of atypical E2Fs is critical for efficient DNA repair and cell cycle progression.


Assuntos
Ciclinas/metabolismo , Reparo do DNA , Fator de Transcrição E2F7/metabolismo , Fase G2/fisiologia , Proteólise , Proteínas Repressoras/metabolismo , Pontos de Checagem do Ciclo Celular , Ciclinas/genética , Dano ao DNA , Replicação do DNA , Fator de Transcrição E2F7/genética , Células HeLa , Humanos , Ligação Proteica , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
J Cell Physiol ; 234(5): 5379-5389, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30350856

RESUMO

Since the identification of B-cell translocation gene 1 (BTG1) and BTG2 as antiproliferation genes more than two decades ago, their protein products have been implicated in a variety of cellular processes including cell division, DNA repair, transcriptional regulation and messenger RNA stability. In addition to affecting differentiation during development and in the adult, BTG proteins play an important role in maintaining homeostasis under conditions of cellular stress. Genomic profiling of B-cell leukemia and lymphoma has put BTG1 and BTG2 in the spotlight, since both genes are frequently deleted or mutated in these malignancies, pointing towards a role as tumor suppressors. Moreover, in solid tumors, reduced expression of BTG1 or BTG2 is often correlated with malignant cell behavior and poor treatment outcome. Recent studies have uncovered novel roles for BTG1 and BTG2 in genotoxic and integrated stress responses, as well as during hematopoiesis. This review summarizes what is currently known about the roles of BTG1 and BTG2 in these and other cellular processes. In addition, we will highlight the molecular mechanisms and biological consequences of BTG1 and BTG2 deregulation during cancer progression and elaborate on the potential clinical implications of these findings.


Assuntos
Proliferação de Células , Proteínas Imediatamente Precoces/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais , Transcrição Gênica , Proteínas Supressoras de Tumor/genética
5.
Cell Rep ; 23(11): 3381-3391.e4, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29898406

RESUMO

Although much is known about how chromosome segregation is coupled to cell division, how intracellular organelles partition during mitotic division is poorly understood. We report that the phosphorylation-dependent degradation of the ARFGEF GBF1 regulates organelle trafficking during cell division. We show that, in mitosis, GBF1 is phosphorylated on Ser292 and Ser297 by casein kinase-2 allowing recognition by the F-box protein ßTrCP. GBF1 interaction with ßTrCP recruits GBF1 to the SCFßTrCP ubiquitin ligase complex, triggering its degradation. Phosphorylation and degradation of GBF1 occur along microtubules at the intercellular bridge of telophase cells and are required for Golgi membrane positioning and postmitotic Golgi reformation. Indeed, expression of a non-degradable GBF1 mutant inhibits the transport of the Golgi cluster adjacent to the midbody toward the Golgi twin positioned next to the centrosome and results in defective Golgi reassembly and cytokinesis failure. These findings define a mechanism that controls postmitotic Golgi reassembly and inheritance.


Assuntos
Citocinese , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Centrossomo/metabolismo , Citocinese/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Microscopia Confocal , Mitose , Mutagênese , Nocodazol/farmacologia , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Imagem com Lapso de Tempo , Proteínas Contendo Repetições de beta-Transducina/antagonistas & inibidores , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo
6.
Exp Hematol ; 60: 57-62.e3, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29408281

RESUMO

Translocation t(12;21) (p13;q22), giving rise to the ETV6-RUNX1 fusion gene, is the most common genetic abnormality in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This translocation usually arises in utero, but its expression is insufficient to induce leukemia and requires other cooperating genetic lesions for BCP-ALL to develop. Deletions affecting the transcriptional coregulator BTG1 are frequently observed in ETV6-RUNX1-positive leukemia. Here we report that Btg1 deficiency enhances the self-renewal capacity of ETV6-RUNX1-positive mouse fetal liver-derived hematopoietic progenitors (FL-HPCs). Combined expression of the fusion protein and a loss of BTG1 drive upregulation of the proto-oncogene Bcl6 and downregulation of BCL6 target genes, such as p19Arf and Tp53. Similarly, ectopic expression of BCL6 promotes the self-renewal and clonogenic replating capacity of FL-HPCs, by suppressing the expression of p19Arf and Tp53. Together these results identify BCL6 as a potential driver of ETV6-RUNX1-mediated leukemogenesis, which could involve loss of BTG1-dependent suppression of ETV6-RUNX1 function.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/biossíntese , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Inibidor p16 de Quinase Dependente de Ciclina , Leucemia/genética , Leucemia/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Proteína Supressora de Tumor p53 , Proteínas Supressoras de Tumor/genética , Variante 6 da Proteína do Fator de Translocação ETS
8.
Oncotarget ; 7(3): 3128-43, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26657730

RESUMO

Cancer cells are frequently exposed to physiological stress conditions such as hypoxia and nutrient limitation. Escape from stress-induced apoptosis is one of the mechanisms used by malignant cells to survive unfavorable conditions. B-cell Translocation Gene 1 (BTG1) is a tumor suppressor that is frequently deleted in acute lymphoblastic leukemia and recurrently mutated in diffuse large B cell lymphoma. Moreover, low BTG1 expression levels have been linked to poor outcome in several solid tumors. How loss of BTG1 function contributes to tumor progression is not well understood. Here, using Btg1 knockout mice, we demonstrate that loss of Btg1 provides a survival advantage to primary mouse embryonic fibroblasts (MEFs) under stress conditions. This pro-survival effect involves regulation of Activating Transcription Factor 4 (ATF4), a key mediator of cellular stress responses. We show that BTG1 interacts with ATF4 and positively modulates its activity by recruiting the protein arginine methyl transferase PRMT1 to methylate ATF4 on arginine residue 239. We further extend these findings to B-cell progenitors, by showing that loss of Btg1 expression enhances stress adaptation of mouse bone marrow-derived B cell progenitors. In conclusion, we have identified the BTG1/PRMT1 complex as a new modifier of ATF4 mediated stress responses.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Estresse Fisiológico/fisiologia , Animais , Apoptose/fisiologia , Linfócitos B/citologia , Linhagem Celular Tumoral , Fibroblastos , Humanos , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
9.
Sci Signal ; 5(227): ra40, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22669845

RESUMO

The kinase eEF2K [eukaryotic elongation factor 2 (eEF2) kinase] controls the rate of peptide chain elongation by phosphorylating eEF2, the protein that mediates the movement of the ribosome along the mRNA by promoting translocation of the transfer RNA from the A to the P site in the ribosome. eEF2K-mediated phosphorylation of eEF2 on threonine 56 (Thr56) decreases its affinity for the ribosome, thereby inhibiting elongation. Here, we show that in response to genotoxic stress, eEF2K was activated by AMPK (adenosine monophosphate-activated protein kinase)-mediated phosphorylation on serine 398. Activated eEF2K phosphorylated eEF2 and induced a temporary ribosomal slowdown at the stage of elongation. Subsequently, during DNA damage checkpoint silencing, a process required to allow cell cycle reentry, eEF2K was degraded by the ubiquitin-proteasome system through the ubiquitin ligase SCF(ßTrCP) (Skp1-Cul1-F-box protein, ß-transducin repeat-containing protein) to enable rapid resumption of translation elongation. This event required autophosphorylation of eEF2K on a canonical ßTrCP-binding domain. The inability to degrade eEF2K during checkpoint silencing caused sustained phosphorylation of eEF2 on Thr56 and delayed the resumption of translation elongation. Our study therefore establishes a link between DNA damage signaling and translation elongation.


Assuntos
Quinase do Fator 2 de Elongação/metabolismo , Mutagênicos/toxicidade , Biossíntese de Proteínas , Estresse Fisiológico , Adenilato Quinase/metabolismo , Dano ao DNA , Ativação Enzimática , Fosforilação , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA