Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Saudi J Biol Sci ; 31(7): 104009, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38766505

RESUMO

This pioneering research explores the transformative potential of recombinant subtilisin, emphasizing its strategic immobilization and nanoparticle synthesis to elevate both stability and therapeutic efficacy. Achieving an impressive 95.25 % immobilization yield with 3 % alginate composed of sodium along with 0.2 M CaCl2 indicates heightened pH levels and thermal resistance, with optimal action around pH 10 as well as 80 °C temperature. Notably, the Ca-alginate-immobilized subtilisin exhibits exceptional storage longevity and recyclability, affirming its practical viability. Comprehensive analyses of the recombinant subtilisin under diverse conditions underscore its adaptability, reflected in kinetic enhancements with increased Vmax (10.7 ± 15 × 103 U/mg) and decreased Km (0.19 ± 0.3 mM) values post-immobilization using N-Suc-F-A-A-F-pNA. UV-visible spectroscopy confirms the successful capping of nanoparticles made of Ag and ZnO by recombinant subtilisin, imparting profound antibacterial efficacy against diverse organisms and compelling antioxidant properties. Cytotoxicity was detected against the MCF-7 breast cancer line of cells, exhibiting IC50 concentrations at 8.87 as well as 14.52 µg/mL of AgNP as well as ZnONP, correspondingly, indicating promising anticancer potential. Rigorous characterization, including FTIR, SEM-EDS, TGA and AFM robustly validate the properties of the capped nanoparticles. Beyond therapeutic implications, the investigation explores industrial applications, revealing the versatility of recombinant subtilisin in dehairing, blood clot dissolution, biosurfactant activity, and blood stain removal. In summary, this research unfolds the exceptional promise of recombinant subtilisin and its nanoparticles, presenting compelling opportunities for diverse therapeutic applications in medicine. These findings contribute substantively to biotechnology and healthcare and stimulate avenues for further innovation and exploration.

2.
ACS Omega ; 9(5): 5230-5245, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343954

RESUMO

Magnesium, which is lightweight and abundant by nature, was widely used in the 19th century to make parts for automobiles and airplanes. Due to their superior strength-to-weight ratios, magnesium alloys were favored for engineering applications over unadulterated magnesium. These alloys result from the combination of magnesium with various metals, including aluminum (Al), titanium (Ti), zinc (Zn), manganese (Mn), calcium (Ca), lithium (Li), and zirconium (Zr). In this study, an alloy of magnesium was created using the powder metallurgy (PM) technique, and its optimal performance was determined through the Taguchi-Gray (TG) analysis method. To enhance the alloy's mechanical properties, diverse weight fractions of silicon carbide (SiC) were introduced. The study primarily focused on the Mg-Zn-Cu-Mn alloy, achieving the optimal composition of Mg-3Zn-1Cu-0.7Mn (ZC-31). Subsequently, composites of ZC-31/SiC were produced via PM and the hot extrusion (HE) process, followed by the assessment of the mechanical properties under various strain rates. The use of silicon carbide (SiC) resulted in enhanced composite densities as a consequence of the increased density exhibited by SiC particles. In addition, the high-energy postsintering approach resulted in a decrease in porosity levels. By integrating silicon carbide (SiC) to boost the microhardness, as well as the ultimate compressive and tensile strength of the composite material, we can observe significant improvements in these mechanical properties. The experimental findings also demonstrated that an augmentation in the weight fraction of SiC and the strain rate led to enhanced ductility and a shift toward a more transcrystalline fracture behavior inside the composite material.

3.
Heliyon ; 10(4): e26146, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420405

RESUMO

In this study, the effects of incorporating cerium oxide into diesel and WPO blends were investigated to determine the potential of the blend as a fuel additive. The study aimed to assess engine-performance, emission, and combustion properties of the blend. The experiments utilized a single-cylinder diesel engine, and researchers prepared two different blends of WPO with 25% WPO in diesel and 50% WPO in diesel. Cerium oxide was added to these blends at concentrations of 25 ppm and 50 ppm using an ultrasonicator. The results demonstrated that increasing cerium oxide content in the blend (50 ppm) led to reduced CO, HC, and NOx emissions at higher loads. For instance, B50 + 50 ppm exhibited lower CO and NOx emissions, while B25 + 50 ppm demonstrated lower HC and smoke emissions. Furthermore, raising the CeO2 content from 25 ppm to 50 ppm resulted in a 3% increase in brake thermal efficiency. Moreover, cerium oxide positively impacted combustion and performance properties of the blends. Among the tested blends, the B50 + 50 ppm combination showcased the highest brake thermal efficiency, optimal air-fuel ratio, and the lowest specific fuel consumption. In conclusion, employing cerium oxide as a fuel additive in diesel-WPO blends offers a promising approach for realizing a sustainable and environmentally friendly future.

4.
ACS Omega ; 8(50): 47701-47713, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144067

RESUMO

This study delves into the influence of incorporating alumina (Al2O3) nanoparticles with waste cooking oil (WCO) biofuels in a gasoline engine that employs premixed fuel. During the suction phase, gasoline blends with atmospheric air homogeneously at the location of the inlet manifold. The biodiesel, enhanced with Al2O3 nanoparticles and derived from WCO, is subsequently directly infused into the combustion chamber at 23° before the top dead center. The results highlight that when gasoline operates in the homogeneous charge compression ignition with direct injection (HCCI-DI) mode, there is a notable enhancement in thermal efficiency by 4.23% in comparison to standard diesel combustion. Incorporating the Al2O3 nanoparticles with the WCO biodiesel contributes to an extra rise of 6.76% in thermal efficiency. Additionally, HCCI-DI combustion paves the way for a reduction in nitrogen oxides and smoke emissions, whereas biodiesel laced with Al2O3 nanoparticles notably reduces hydrocarbon and carbon monoxide discharges. Predictive tools such as artificial neural networks and regression modeling were employed to forecast engine performance variables.

5.
ACS Omega ; 8(41): 37641-37653, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867648

RESUMO

Magnesium is renowned for its favorable low-density attributes, rendering it a viable choice for commercial engineering applications in which weight has substantial design implications. Magnesium (Mg) stands as a readily obtainable metallic element, exhibiting robustness, efficient heat dissipation, and excellent damping properties. The utilization of pure magnesium remains infrequent due to its susceptibility to instability under high temperatures and pronounced vulnerability to corrosion within humid environments. Hence, the incorporation of magnesium alloys into the design process of aircraft, automotive, and biomedical applications assumes paramount importance. This Review presents a comprehensive review of research endeavors and their resultant achievements concerning the advancement of magnesium alloys. Specifically focusing on aerospace, automotive, and biomedical applications, the Review underscores the pivotal role played by alloying constituents, namely aluminum (Al), copper (Cu), calcium (Ca), and PEO coatings, in influencing the microstructural attributes, mechanical potency, and resistance to corrosion.

6.
Saudi J Biol Sci ; 30(11): 103807, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37744003

RESUMO

The increase and dissemination of multi-drug resistant bacteria have presented a major healthcare challenge, making bacterial infections a significant concern. The present research contributes towards the production of bioactive subtilisin from a marine soil isolate Bacillus subtilis strain ZK3. Custard apple seed powder (raw carbon) and mustard oil cake (raw nitrogen) sources showed a pronounced effect on subtilisin production. A 7.67-fold enhancement in the production was evidenced after optimization with central composite design-response surface methodology. Subtilisin capped silver (AgNP) and zinc oxide (ZnONP) nanoparticles were synthesized and characterized by UV-Visible spectroscopy. Subtilisin and its respective nanoparticles revealed significant biological properties such as, antibacterial activity against all tested pathogenic strains with potential against Escherichia coli and Pseudomonas aeruginosa. Prospective antioxidant behavior of subtilisin, AgNP and ZnONP was evidenced through radical scavenging assays with ABTS and DPPH. Subtilisin, AgNP and ZnONP revealed cytotoxic effect against cancerous breast cell lines MCF-7 with IC50of 83.48, 3.62 and 7.57 µg/mL respectively. Characterizations of nanoparticles were carried out by Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis and atomic force microscopy analysis to elucidate the structure, surface and thermostability properties. The study proposes the potential therapeutic applications of subtilisin and its nanoparticles, a way forward for further exploration in the field of healthcare.

7.
ACS Omega ; 8(37): 33845-33856, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744815

RESUMO

In order to overcome the limitations of standard ball-mill mixing processes to fabricate a uniformly dispersed carbon nanotube (CNT) reinforcement composite without damaging CNTs in matrix powder, a unique and easy solution-mixing process was developed. The present study aims to synthesize Al-0.5 wt % CNT composites using ball-milling and solution-mixing processes and compares their CNT dispersion and structural and thermal properties. Compared with the ball-milling process, the solution-mixing process was simple and effective for the uniform distribution of CNTs without structural damage. Various methods were utilized to examine the structural characteristics of the composite powder. These techniques included high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy, and particle size analysis. Raman spectroscopy observes an increase of defects in ball-milled composites, and the particle size analyzer confirms the structural deformation, resulting in the degradation of composite powder mechanical properties. In the solution-mixing process, aluminum particles and the structure of CNTs are well-preserved even after mixing. Thermogravimetric analysis (TGA) was used to research the thermal stability of the composite materials. The results validated the impact of CNTs on thermal characteristics enhancement (improved thermal resistance) when compared with pure aluminum, suggesting potential uses in the aerospace industry, transport, and construction sectors.

8.
Saudi J Biol Sci ; 30(10): 103787, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37705700

RESUMO

The increasing demands of keratinases for biodegradation of recalcitrant keratinaceous waste like chicken feathers has lead to research on newer potential bacterial keratinases to produce high-value products with biological activities. The present study reports a novel keratinolytic bacterium Bacillus velezensis strain ZBE1 isolated from deep forest soil of Western Ghats of Karnataka, which possessed efficient feather keratin degradation capability and induced keratinase production. Production kinetics depicts maximum keratinase production (11.65 U/mL) on 4th day with protein concentration of 0.61 mg/mL. Effect of various physico-chemical factors such as, inoculum size, metal ions, carbon and nitrogen sources, pH and temperature influencing keratinase production were optimized and 3.74 folds enhancement was evidenced through response surface methodology. Silver (AgNP) and zinc oxide (ZnONP) nanoparticles with keratin hydrolysate produced from chicken feathers by the action of keratinase were synthesized and verified with UV-Visible spectroscopy that revealed biological activities like, antibacterial action against Bacillus cereus and Escherichia coli. AgNP and ZnONP also showed potential antioxidant activities through radical scavenging activities by ABTS and DPPH. AgNP and ZnONP revealed cytotoxic effect against MCF-7 breast cancer cell lines with IC50 of 5.47 µg/ml and 62.26 µg/ml respectively. Characterizations of nanoparticles were carried out by Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis and atomic force microscopy analysis to elucidate the thermostability, structure and surface attributes. The study suggests the prospective applications of keratinase to trigger the production of bioactive value-added products and significant application in nanotechnology in biomedicine.

9.
Saudi J Biol Sci ; 30(9): 103753, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37583871

RESUMO

Micrococcus luteus, also known as M. luteus, is a bacterium that inhabits mucous membranes, human skin, and various environmental sources. It is commonly linked to infections, especially among individuals who have compromised immune systems. M. luteus is capable of synthesizing the enzyme superoxide dismutase (SOD) as a component of its protective response to reactive oxygen species (ROS). This enzyme serves as a promising target for drug development in various diseases. The current study utilized a subtractive genomics approach to identify potential therapeutic targets from M. luteus. Additionally, genome mining was employed to identify and characterize the biosynthetic gene clusters (BGCs) responsible for the production of secondary metabolites in Bacillus licheniformis (B. licheniformis), a bacterium known for its production of therapeutically relevant secondary metabolites. Subtractive genomics resulted in identification of important extracellular protein SOD as a drug target that plays a crucial role in shielding cells from damage caused by ROS. Genome mining resulted in identification of five potential ligands (secondary metabolites) from B. licheniformis such as, Bacillibactin (BAC), Paenibactin (PAE), Fengycin (FEN), Surfactin (SUR) and Lichenysin (LIC). Molecular docking was used to predict and analyze the binding interactions between these five ligands and target protein SOD. The resulting protein-ligand complexes were further analyzed for their motions and interactions of atoms and molecules over 250 ns using molecular dynamics (MD) simulation analysis. The analysis of MD simulations suggests, Bacillibactin as the probable candidate to arrest the activities of SOD. All the five compounds reported in this study were found to act by directly/indirectly interacting with ROS molecules, such as superoxide radicals (O2-) and hydrogen peroxide (H2O2), and transforming them into less reactive species. This antioxidant activity contributes to its protective effects against oxidative stress-induced damage in cells making them likely candidate for various applications, including in the development of antioxidant-based therapies, nutraceuticals, and functional foods.

10.
ACS Omega ; 8(27): 24176-24184, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37457476

RESUMO

Extensive investigations were made and empirical relations were proposed for the thermal conductivity of mono-nanofluids. The effect of concentration, diameter, and thermal properties of participating nanoparticles is missing in the majority of existing thermal conductivity models. An attempt is made to propose a model that considers the influence of such missing parameters on the thermal conductivity of hybrid nanofluids. Al2O3-TiO2 hybrid nanofluids have a 0.1% particle volume concentration prepared with distinct particle volume ratios (k - 1:6 - k, k = 1 to 6) in DI water. The samples were characterized, and the size and shape of the nanoparticles were verified. Also, the influence of varying particle volume ratios and the fluid temperature (varying from 283 to 308 K) were examined. 2.4 and 2.1% enhancements were observed in the thermal conductivity of alumina (5:0) and titania (0:5) nanofluids (having 0.1% volume concentration), respectively. Due to the low thermal conductivity of titania nanoparticles, the conductivity of the hybrid solution is above that of titania and below that of alumina nanofluids. An empirical relation for the thermal conductivity of hybrid nanofluids is established and validated considering the individual particle size, volume ratio, and thermal conductivity of particles.

11.
J Biomol Struct Dyn ; 41(22): 12610-12619, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36651083

RESUMO

Pseudomonas aeruginosa is one of the leading opportunistic pathogens that causes nosocomial pneumonia and mostly in people with cystic fibrosis. In the present study, an in-silicoapproach was adopted to identify the novel drug target against Pseudomonas aeruginosa by employing subtractive genomics and molecular docking studies. Each step in the subtractive genomics scrutinized the bacterial proteome and determined a potential drug target against Pseudomonas aeruginosa. 71 essential proteins were obtained from the subcellular localization method that resides in the extracellular region. Metabolic pathways were studied to elucidate the unique pathways where the involvement of proteins present in the pathogen was predicted and a total of 6 unique pathways were determined. By, Genome mining of the source organism Paenibacillusehimensis, 9 ligands were obtained. The molecular docking analysis between the binding site of target protein NDK and ligands was carried out by employing the AutoDock Vina tool. Based on the highest binding affinity, Paenibactin, AnabaenopeptinNZ857 and Nostamide A complex with NDK protein with a lower binding energy of -7.5 kcal/mol, -7.4and -7.2 kcal/molrespectively were considered for the simulation studies. Molecular dynamics simulation studies showed the ligand in complex with protein was highly stable and rigid for a duration of 150 ns. For Paenibactin, AnabaenopeptinNZ857 and Nostamide Acomplex with protein, RMSD plot showed a deviation of ∼0.2-0.3 nm till ∼30ns/50 ns-110ns and further stabilized. The radius of the gyration plot clearly showed that the values stayed at ∼1.45 nm- 1.55 nm showing compactness and stability. The SASA stayed at the range ∼80nm2 and at least one total number of hydrogen bonds was shown throughout the 150 ns simulation for all three possible ligand-protein complexes. In the RMSF plot, the maximum fluctuation was ranged from ∼0.4-0.42 nm at the range between ∼57ns-60ns.The Paenibactin, AnabaenopeptinNZ857 and Nostamide A complex with NDK protein showed a stable, rigid and compact interaction throughout the simulation of duration 150 ns.Communicated by Ramaswamy H. Sarma.


Assuntos
Núcleosídeo-Difosfato Quinase , Pseudomonas aeruginosa , Humanos , Simulação de Acoplamento Molecular , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Núcleosídeo-Difosfato Quinase/genética , Ligantes , Sítios de Ligação , Simulação de Dinâmica Molecular
12.
Polymers (Basel) ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38231974

RESUMO

In the past few years, significant research efforts have been directed toward improving the electrochemical capabilities of supercapacitors by advancing electrode materials. The present work signifies the development of poly(lactic acid)/alloysite nano-clay as an electrode material for supercapacitors. Physico-chemical characterizations were analyzed by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, and a universal testing machine. Cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge techniques were employed to evaluate electrochemical characteristics. The optimized poly(lactic acid)/halloysite nano-clay film revealed the highest specific capacitance of 205.5 F g-1 at 0.05 A g-1 current density and showed 14.6 Wh kg-1 energy density at 72 W kg-1 power density. Capacitance retention of 98.48% was achieved after 1000 cycles. The microsupercapacitor device presented a specific capacitance of 197.7 mF g-1 at a current density of 0.45 mA g-1 with 10.8 mWh kg-1 energy density at 549 mW kg-1 power density.

13.
Polymers (Basel) ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501506

RESUMO

Polyelectrolyte complex membranes (PECMs) were prepared by combining sodium carboxymethyl cellulose (NaCMC) and gelatin (Ge) with variations in the Ge content in the NaCMC matrix. Characterization methods, such as infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), contact angle analysis (CA), and universal testing machines (UTM) were used to investigate the physicochemical studies of the prepared membranes. The pervaporation characteristics of membranes with Ge content were investigated using an azeotropic mixture of water and bioethanol. The obtained data revealed that the membrane with 15 mass% of Ge (M-3) showed a maximum flux of 7.8403 × 10-2 kg/m2·h with separation selectivity of 2917 at 30 °C. In particular, the total and water flux of PECMs are shown as very close to each other indicating that the fabricated membranes could be employed to successfully break the azeotropic point of water-bioethanol mixtures. Using temperature-dependent permeation and diffusion data, the Arrhenius activation parameters were calculated, and the obtained values of water permeation (Epw) were considerably smaller than bioethanol permeation (EpE). Developed membranes showed the positive heat of sorption (ΔHs), suggesting that Henry's sorption mode is predominant.

14.
Materials (Basel) ; 15(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36079562

RESUMO

Magnesium matrix composites are extensively used in automotive and structural applications due to their low density, high strength, and wear-resistant properties. To reach the scope of industry needs, research is carried out regarding enhancing the mechanical and tribological behavior of the magnesium composites by reinforcing the nano-sized reinforcements. In the present work, research has been carried out to enhance the properties of the magnesium AZ91D hybrid composite by reinforcing carbon fibers (CFs) and multi-walled carbon nanotubes (MWCNTs) with varying weight percentages (AZ91D + 0.5% CF's + 0.5% MWCNT and AZ91D + 0.75% CF's + 0.75% MWCNT, respectively). The experimental tests were carried out to evaluate the mechanical and tribological behavior of the composites. The test results showed that the addition of CF and MWCNT reinforcements improved the hybrid Mg composite's hardness, tensile strength, and impact strength compared to the base Mg matrix. The AZ91D + 0.75% CF's + 0.75% MWCNT hybrid composite showed a 19%, 35%, and 66% increased hardness, tensile strength, and impact strength, respectively, compared to the base Mg AZ91D. The wear test results also showed the improved wear resistance of the Mg composite compared to the base matrix. The enhanced wear resistance of the composite is due to the addition of hard MWCNT and CF reinforcements. The wear rate of the AZ91D + 0.75%CF's + 0.75% MWCNT composite for a load of 30 N at a sliding distance of 1500 m is lower as compared to the base matrix. The SEM micrographs of the worn surfaces revealed the existence of abrasive wear. The improved mechanical and tribological behavior of the magnesium composite is also due to the homogeneous distribution of the hard reinforcement particles along the grain boundaries.

15.
Gels ; 8(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35877486

RESUMO

Chitosan-capped silver nanoparticle (CS-capped AgNPs)-incorporated Poly(vinyl alcohol) (PVA) hybrid membranes were prepared by a solution-casting technique for ethanol dehydration via pervaporation. The incorporation of CS-capped AgNPs into the PVA membrane and its influence on membrane properties and pervaporation-separation process of azeotropic water/ethanol mixture was studied. The addition of CS-capped AgNPs into the PVA membrane reduced the crystallinity, thereby increasing the hydrophilicity and swelling degree of the hybrid membrane, supported by contact angle (CA) analyzer and swelling degree experiments, respectively. Fourier transform infrared spectroscopy (FTIR) demonstrated the formation of polymeric matrix between PVA and CS and also the binding of AgNPs onto the functional group of CS and PVA, which was also reflected in the microstructure images demonstrated by scanning electron microscopy (SEM) and by 2θ angle of wide-angle X-ray diffraction (WAXD). The effect of CS-capped AgNPs on the thermal stability of the hybrid membrane was demonstrated by differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). These characteristics of the hybrid membrane positively impact the efficiency of the dehydration of ethanol, as indicated by pervaporation experiments. The best performances in total flux (12.40 ± 0.20 × 10-2 kg/m2 h) and selectivity (3612.33 ± 6.03) at 30 °C were shown for CS-capped AgNPs PVA hybrid membrane containing 2 wt.% CS-capped AgNPs (M-4). This confirms that the developed hybrid membranes can be efficiently used to separate water from azeotropic aqueous ethanol.

16.
Polymers (Basel) ; 13(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502945

RESUMO

In this study, acrylonitrile butadiene styrene (ABS) and graphite powder-a solid lubricant-were filled and characterized for friction and wear responses. The fused deposition modeling (FDM) technique was utilized to synthesize ABS-graphite composites. A twin-screw extrusion approach was employed to create the composite filament of graphite-ABS that is suitable for the FDM process. Three graphite particle ratios ranging from 0% to 5% were explored in the ABS matrix. The wear and friction properties of ABS composites were examined using a pin on disc tribometer at varied sliding velocities and weights. As a result of the graphite addition in the ABS matrix, weight losses for FDM components as well as a decreased coefficient of friction were demonstrated. Furthermore, as the graphite weight percentage in the ABS matrix grows the value of friction and wear loss decreases. The wear mechanisms in graphite filled ABS composites and ABS were extensively examined using scanning electron microscopy and confocal microscopy.

17.
Polymers (Basel) ; 13(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502992

RESUMO

This experimental study investigates the mechanical properties of polymer matrix composites containing nanofiller developed by fused deposition modelling (FDM). A novel polymer nanocomposite was developed by amalgamating polycarbonate-acrylonitrile butadiene styrene (PC-ABS) by blending with graphene nanoparticles in the following proportions: 0.2, 0.4, 0.6, and 0.8 wt %. The composite filaments were developed using a twin-screw extrusion method. The mechanical properties such as tensile strength, low-velocity impact strength, and surface roughness of pure PC-ABS and PC-ABS + graphene were compared. It was observed that with the addition of graphene, tensile strength and impact strength improved, and a reduction in surface roughness was observed along the build direction. These properties were analyzed to understand the dispersion of graphene in the PC-ABS matrix and its effects on the parameters of the study. With the 0.8 wt % addition of graphene to PC-ABS, the tensile strength increased by 57%, and the impact resistance increased by 87%. A reduction in surface roughness was noted for every incremental addition of graphene to PC-ABS. The highest decrement was seen for the 0.8 wt % addition of graphene reinforcement that amounted to 40% compared to PC-ABS.

18.
Biomed Mater Eng ; 31(6): 339-349, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33252058

RESUMO

BACKGROUND: The left coronary artery commonly known as LCA gets divided into two branches, such as the left circumflex (LCX) and left anterior descending (LAD) at a particular angle. This angle is varies from person to person. The present computational study contributes remarkable expertise about the influence of this angle variation on the hemodynamic parameters in the presence of 80% area stenosis at the LAD branch. OBJECTIVE: This study aimed to compare the effect of the bifurcation angle on hemodynamic parameters in the left coronary artery with 80% stenosis. METHOD: Computational models of left coronary bifurcation angles of 30°, 60°, 90°, 120° were developed to understand the flow behavior of left coronary artery branches. The 80% area stenosis (AS) is considered at the LAD branch immediate to bifurcation. RESULTS: Measurements of pressure, velocity and wall shear stress were carried out corresponding to various bifurcation angles. It was found that the drop-in pressure increases as the angle increases from narrow to wider. A slight elevation in the velocity at the stenosis was observed. In addition, the obtained results further reveal a recirculation region immediately after the plaque, which leads to more deposition of plaque in the flow obstructed area. It is known that the shear stress at the arterial wall across the stenosis increases as the angle of bifurcation increases from narrow to wider. CONCLUSIONS: The bifurcation of the left coronary artery and size of the stenosis have a notable impact on the pressure and wall shear stress. These two factors should be given due consideration by cardiologists to assess the complexity of stenosis in the LCA branches.


Assuntos
Estenose Coronária , Constrição Patológica , Angiografia Coronária , Vasos Coronários , Hemodinâmica , Humanos , Placa Aterosclerótica
19.
J Mol Model ; 26(11): 302, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33057961

RESUMO

Polymer gears pose major advantages, like noiseless operation, resistive against corrosion, low weight, ability to damp vibrations, ease of manufacturability, and ability to operate without lubrication like in printers, household appliances, etc. In order to enhance mechanical properties of gear materials, various reinforcing materials are added such as glass and carbon fibers. The orientation of these fibers and distribution are critical parameters at the microstructural level for polymer reinforced with short fibers, which defines the strength and life of gears. The geometric accuracy and precision of molded gears are improved by the injection molding technique. The fiber orientation prediction is a new and novel aspect for high performance and life, as these injection-molded gears have complex patterns of fiber orientation. This also affects material properties such as elastic modulus, strength, and gear geometrical dimensional properties shrinkage and warpage. In this present work, an attempt is made to develop 3D symmetric spur gear tooth geometry using Autodesk Fusion 360. The injection molding parameters such as fiber orientation tensor, volumetric shrinkage at ejection, weld lines, deflection, and confidence in filling are studied for modeled gear having symmetric teeth profile for unreinforced and 20%, 30%, 40%, 50%, and 60% glass fiber-reinforced nylon 6/6 (PA66) by using Autodesk Moldflow Adviser 2017. The result obtained from mold simulation tool indicates that fiber orientation tensor for varying glass fiber contents was close to unity. The volumetric shrinkage considerably reduced from unreinforced PA66 to glass-reinforced PA66.Graphical abstract.

20.
Biomed Mater Eng ; 30(4): 463-473, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31498120

RESUMO

BACKGROUND: The most common cause of coronary artery disease (CAD) is vascular damage with the cholesterol built-up and other materials on the inner arterial wall, known as atherosclerosis. OBJECTIVE: This paper aims to investigate the effect of stenosis on the hemodynamics in the four suspected coronary artery disease patients. Computer tomography (CT) data was acquired from patients of suspected coronary artery disease to reconstruct left coronary artery. METHODS: The 3D computational simulation was carried out with four patient-specific models with area stenosis >50% located at the left anterior descending (LAD) and left circumflex (LCX) branches. RESULTS: The pressure, velocity and wall shear stress were calculated during the cardiac cycle. A significant pressure drop across the stenosis and increase in the velocity at the stenosis were observed at LAD and LCX branches. An increase in the wall shear stress in the region of stenosis also observed with the prevalence of the recirculation zone at the post stenosis region which results in the formation of stenosis. CONCLUSIONS: Our analysis provides an insight into the progression of stenosis and wall rupture, thus improving our understanding the flow behavior patient-specific realistic artery models.


Assuntos
Estenose Coronária/fisiopatologia , Vasos Coronários/fisiopatologia , Adulto , Estenose Coronária/diagnóstico por imagem , Estenose Coronária/patologia , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Feminino , Hemodinâmica , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA