Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Food Chem ; 463(Pt 4): 141467, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39426242

RESUMO

Edible plant oils provide a crucial source of lipids for human nutrition. Owing to the complex processing of some high-quality variants, including Styrian pumpkin seed oil, edible plant oils have become susceptible to food fraud by adulteration with cheaper vegetable oils, compromising both authenticity and quality. To address this issue, a workflow was developed utilizing QTOF-MS/MS to search for triacylglycerol markers indicative of adulteration and subsequently adapted them for routine analysis using triple quadrupole MS/MS. By developing a transparent classification system utilizing a multi-feature triacylglycerol panel, reliable detection of adulteration down to 3 % (w/w) is possible. Calculating ratios of selected markers and establishing intervals derived from pure oils further enables easy scalability to adjust marker ratios and ensure robustness against permanent or seasonal changes. Our work aims to make advances towards a rapid and accurate detection of oil adulteration in food industry, crucial for maintaining customer trust and safety.

2.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39215465

RESUMO

AIMS: Carotenoids are a class of hydrophobic substances that are important as food and feed colorants and as antioxidants. The pathway for ß-carotene synthesis has been expressed in various yeast species, albeit with rather low yields and titers. The inefficient conversion of phytoene to lycopene is often regarded as a bottleneck in the pathway. In this study, we aimed at the improvement of ß-carotene production in Saccharomyces cerevisiae by specifically engineering the enzymatic reactions producing and converting phytoene. METHODS AND RESULTS: We show that phytoene is stored in intracellular lipid droplets, whereas the enzyme responsible for its conversion, phytoene dehydrogenase, CrtI, is located at the endoplasmic reticulum, like the bifunctional enzyme CrtYB that catalyses the reaction before and after CrtI. To improve the accessibility of phytoene for CrtI and to delay its storage in lipid droplets, we tested the relocation of CrtI and CrtYB to mitochondria. However, only the retargeting of CrtYB resulted in an improvement of the ß-carotene content, whereas the mitochondrial variant of CrtI was not functional. Surprisingly, a cytosolic variant of this enzyme, which we obtained through the elimination of its carboxy-terminal membrane anchor, caused an increase in ß-carotene accumulation. Overexpression of this CrtI variant in an optimized medium resulted in a strain with a ß-carotene content of 79 mg g-1 cell dry weight, corresponding to a 76-fold improvement over the starting strain. CONCLUSIONS: The retargeting of heterologously expressed pathway enzymes improves ß-carotene production in S. cerevisiae, implicating extensive inter-organellar transport phenomena of carotenoid precursors. In addition, strong overexpression of carotenoid biosynthetic enzymes and the optimization of cultivation conditions are required for high contents.


Assuntos
Carotenoides , Saccharomyces cerevisiae , beta Caroteno , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , beta Caroteno/metabolismo , Carotenoides/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Engenharia Metabólica , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/enzimologia
3.
Biomed Pharmacother ; 178: 117244, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39116783

RESUMO

Atherosclerosis, the leading cause of cardiovascular disease, cannot be sufficiently explained by established risk factors, including cholesterol. Elevated plasma homocysteine (Hcy) is an independent risk factor for atherosclerosis and is closely linked to cardiovascular mortality. However, its role in atherosclerosis has not been fully clarified yet. We have previously shown that rabbits fed a diet deficient in B vitamins and choline (VCDD), which are required for Hcy degradation, exhibit an accumulation of macrophages and lipids in the aorta, aortic stiffening and disorganization of aortic collagen in the absence of hypercholesterolemia, and an aggravation of atherosclerosis in its presence. In the current study, plasma Hcy levels were increased by intravenous injections of Hcy into balloon-injured rabbits fed VCDD (VCDD+Hcy) in the absence of hypercholesterolemia. While this treatment did not lead to thickening of aortic wall, intravenous injections of Hcy into rabbits fed VCDD led to massive accumulation of VLDL-triglycerides as well as significant impairment of vascular reactivity of the aorta compared to VCDD alone. In the aorta intravenous Hcy injections into VCDD-fed rabbits led to fragmentation of aortic elastin, accumulation of elastin-specific electron-dense inclusions, collagen disorganization, lipid degradation, and autophagolysosome formation. Furthermore, rabbits from the VCDD+Hcy group exhibited a massive decrease of total protein methylated arginine in blood cells and decreased creatine in blood cells, serum and liver compared to rabbits from the VCDD group. Altogether, we conclude that Hcy contributes to atherogenic transformation of the aorta not only in the presence but also in the absence of hypercholesterolemia.


Assuntos
Aorta , Aterosclerose , Homocisteína , Hipercolesterolemia , Animais , Coelhos , Aterosclerose/patologia , Aterosclerose/metabolismo , Homocisteína/sangue , Aorta/patologia , Aorta/metabolismo , Hipercolesterolemia/sangue , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Masculino , Colina/administração & dosagem , Modelos Animais de Doenças , Elastina/metabolismo , Complexo Vitamínico B/administração & dosagem , Complexo Vitamínico B/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-39084297

RESUMO

BACKGROUND: Allergens can cross the epithelial barrier to enter the body but how this cellular passage affects protein structures and the downstream interactions with the immune system are still open questions. OBJECTIVE: We sought to show the molecular details and the effects of 3 nonspecific lipid transfer proteins (nsLTPs; Mal d 3 [allergenic nsLTP1 from apple], Cor a 8 [allergenic nsLTP1 from hazelnut], and Pru p 3 [allergenic nsLTP1 from peach]) on epithelial cell uptake and transport. METHODS: We used fluorescent imaging, flow cytometry, and proteomic and lipidomic screenings to identify the mechanism involved in nsLTP cellular uptake and signaling on selected epithelial and transgenic cell lines. RESULTS: nsLTPs are transported across the epithelium without affecting cell membrane stability or viability, and allergen uptake was largely impaired by inhibition of clathrin-mediated endocytosis. Analysis of the lipidome associated with nsLTPs showed a wide variety of lipid ligands predicted to bind inside the allergen hydrophobic cavity. Importantly, the internalization of nsLTPs was contingent on these ligands in the protein complex. nsLTPs were found to initiate cellular signaling via Toll-like receptor 2 but not the cluster of differentiation 1 protein receptor, despite neither being essential for nsLTP endocytosis. We also provide evidence that the 3 allergens induced intracellular stress signaling through activation of the NOD2 pathway. CONCLUSIONS: Our work consolidates the current model on nsLTP-epithelial cell interplay and adds molecular details about cell transport and signaling. In addition, we have developed a versatile toolbox to extend these investigations to other allergens and cell types.

5.
Biomedicines ; 11(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38137409

RESUMO

BACKGROUND: Individual functions of members of the bromodomain (BRD) and extra-terminal (BET) protein family underlying the anti-inflammatory effects of BET inhibitors in rheumatoid arthritis (RA) are incompletely understood. Here, we aimed to analyze the regulatory functions of BRD3, an understudied member of the BET protein family, in RA synovial fibroblasts (FLS). METHODS: BRD3 was silenced in FLS prior to stimulation with TNF. Alternatively, FLS were treated with I-BET. Transcriptomes were analyzed by RNA sequencing (RNAseq), followed by pathway enrichment analysis. We confirmed results for selective target genes by real-time PCR, ELISA, and Western blotting. RESULTS: BRD3 regulates the expression of several cytokines and chemokines in FLS, and positively correlates with inflammatory scores in the RA synovium. In addition, RNAseq pointed to a profound role of BRD3 in regulating FLS proliferation, metabolic adaption, and response to stress, including oxidative stress, and autophagy. CONCLUSIONS: BRD3 acts as an upstream regulatory factor that integrates the response to inflammatory stimuli and stress conditions in FLS and executes many functions of BET proteins that have previously been identified using pan-BET inhibitors.

6.
Sci Rep ; 13(1): 17112, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816914

RESUMO

The activation of stress response pathways in synovial fibroblasts (SF) is a hallmark of rheumatoid arthritis (RA). CBP and p300 are two highly homologous histone acetyl transferases and writers of activating histone 3 lysine 27 acetylation (H3K27ac) marks. Furthermore, they serve as co-factors for transcription factors and acetylate many non-histone proteins. Here we showed that p300 but not CBP protein expression was down regulated by TNF and 4-hydroxynonenal, two factors that mimic inflammation and oxidative stress in the synovial microenvironment. We used existing RNA-sequencing data sets as a basis for a further in-depth investigation of individual functions of CBP and p300 in regulating different stress response pathways in SF. Pathway enrichment analysis pointed to a profound role of CBP and/ or p300 in regulating stress response-related gene expression, with an enrichment of pathways associated with oxidative stress, hypoxia, autophagy and proteasome function. We silenced CBP or p300, and performed confirmatory experiments on transcriptome, protein and functional levels. We have identified some overlap of CBP and p300 target genes in the oxidative stress response pathway, however, with several genes being regulated in opposite directions. The majority of stress response genes was regulated by p300, with a specific function of p300 in regulating hypoxia response genes and genes encoding proteasome subunits. Silencing of p300 suppressed proteasome enzymatic activities. CBP and p300 regulated autophagy on transcriptome and functional levels. Whereas CBP was indispensable for autophagy synthesis, silencing of p300 affected late-stage autophagy. In line with impaired autophagy and proteasome function, poly-ubiquitinated proteins accumulated after silencing of p300.


Assuntos
Proteína de Ligação a CREB , Fatores de Transcrição de p300-CBP , Humanos , Acetilação , Proteína de Ligação a CREB/metabolismo , Fibroblastos/metabolismo , Hipóxia , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
7.
Mol Metab ; 72: 101725, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37059417

RESUMO

OBJECTIVE: Hepatic triacylglycerol accumulation and insulin resistance are key features of NAFLD. However, NAFLD development and progression are rather triggered by the aberrant generation of lipid metabolites and signaling molecules including diacylglycerol (DAG) and lysophosphatidylcholine (lysoPC). Recent studies showed decreased expression of carboxylesterase 2 (CES2) in the liver of NASH patients and hepatic DAG accumulation was linked to low CES2 activity in obese individuals. The mouse genome encodes several Ces2 genes with Ces2a showing highest expression in the liver. Herein we investigated the role of mouse Ces2a and human CES2 in lipid metabolism in vivo and in vitro. METHODS: Lipid metabolism and insulin signaling were investigated in mice lacking Ces2a and in a human liver cell line upon pharmacological CES2 inhibition. Lipid hydrolytic activities were determined in vivo and from recombinant proteins. RESULTS: Ces2a deficient mice (Ces2a-ko) are obese and feeding a high-fat diet (HFD) provokes severe hepatic steatosis and insulin resistance together with elevated inflammatory and fibrotic gene expression. Lipidomic analysis revealed a marked rise in DAG and lysoPC levels in the liver of Ces2a-ko mice fed HFD. Hepatic lipid accumulation in Ces2a deficiency is linked to lower DAG and lysoPC hydrolytic activities in liver microsomal preparations. Moreover, Ces2a deficiency significantly increases hepatic expression and activity of MGAT1, a PPAR gamma target gene, suggesting aberrant lipid signaling upon Ces2a deficiency. Mechanistically, we found that recombinant Ces2a and CES2 show significant hydrolytic activity towards lysoPC (and DAG) and pharmacological inhibition of CES2 in human HepG2 cells largely phenocopies the lipid metabolic changes present in Ces2a-ko mice including reduced lysoPC and DAG hydrolysis, DAG accumulation and impaired insulin signaling. CONCLUSIONS: Ces2a and CES2 are critical players in hepatic lipid signaling likely via the hydrolysis of DAG and lysoPC at the ER.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lisofosfatidilcolinas , Diglicerídeos/metabolismo , Insulina/metabolismo , Obesidade/metabolismo
8.
FASEB J ; 37(4): e22882, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36943402

RESUMO

Physical inactivity is one of the leading causes of chronic metabolic disease including obesity. Increasing physical activity (PA) has been shown to improve cardiometabolic and musculoskeletal health and to be associated with a distinct gut microbiota composition in trained athletes. However, the impact of PA on the gut microbiota is inconclusive for individuals performing PA in their day-to-day life. This study examined the role of PA and hand-grip strength on gut microbiome composition in middle-aged adults (40-65 years, n = 350) with normal (18.5-24.9 kg/m2 ) and overweight (25-29.9 kg/m2 ) body mass index (BMI). PA was recorded using the International Physical Activity Questionnaire, and hand-grip strength was measured using a dynamometer. Serum samples were assessed for lipidomics while DNA was extracted from fecal samples for microbiome analysis. Overweight participants showed a higher concentration of triacylglycerols, and lower concentrations of cholesteryl esters, sphingomyelin, and lyso-phosphotidylcholine lipids (p < .05) compared with those with normal BMI. Additionally, overweight participants had a lower abundance of the Oscillibacter genus (p < .05). The impact of PA duration on the gut microbiome was BMI dependent. In normal but not overweight participants, high PA duration showed greater relative abundance of commensal taxa such as Actinobacteria and Proteobacteria phyla, as well as Collinsella and Prevotella genera (p < .05). Furthermore, in males with normal BMI, a stronger grip strength was associated with a higher relative abundance of Faecalibacterium and F. prausnitzii (p < .05) compared with lower grip strength. Taken together, data suggest that BMI plays a significant role in modeling PA-induced changes in gut microbiota.


Assuntos
Índice de Massa Corporal , Exercício Físico , Microbioma Gastrointestinal , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Exercício Físico/fisiologia , Obesidade/microbiologia , Sobrepeso/microbiologia , Força da Mão
9.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834530

RESUMO

Monoglyceride lipase (MGL) hydrolyzes monoacylglycerols (MG) to glycerol and one fatty acid. Among the various MG species, MGL also degrades 2-arachidonoylglycerol, the most abundant endocannabinoid and potent activator of the cannabinoid receptors 1 and 2. We investigated the consequences of MGL deficiency on platelet function using systemic (Mgl-/-) and platelet-specific Mgl-deficient (platMgl-/-) mice. Despite comparable platelet morphology, loss of MGL was associated with decreased platelet aggregation and reduced response to collagen activation. This was reflected by reduced thrombus formation in vitro, accompanied by a longer bleeding time and a higher blood volume loss. Occlusion time after FeCl3-induced injury was markedly reduced in Mgl-/- mice, which is consistent with contraction of large aggregates and fewer small aggregates in vitro. The absence of any functional changes in platelets from platMgl-/- mice is in accordance with lipid degradation products or other molecules in the circulation, rather than platelet-specific effects, being responsible for the observed alterations in Mgl-/- mice. We conclude that genetic deletion of MGL is associated with altered thrombogenesis.


Assuntos
Monoacilglicerol Lipases , Monoglicerídeos , Animais , Camundongos , Endocanabinoides/metabolismo , Lipólise , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoacilglicerol Lipases/genética
10.
Clin Biochem ; 114: 95-102, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36849049

RESUMO

OBJECTIVES: Calibration is an important source of variability in liquid chromatography mass spectrometry (LC-MS) methods for insulin-like growth factor 1 (IGF-1). This study investigated the impact of different calibrator matrices on IGF-1 measurements by LC-MS. Moreover, the comparability of immunoassays and LC-MS was assessed. DESIGN & METHODS: Calibrators from 12.5 to 2009 ng/ml were prepared by spiking WHO international Standard (ID 02/254 NIBSC, UK) into the following matrices: native human plasma, fresh charcoal-treated human plasma (FCTHP), old charcoal-treated human plasma, deionized water, bovine serum albumin (BSA), and rat plasma (RP). A validated in-house LC-MS method was calibrated repeatedly with these calibrators. Then, serum samples from 197 growth hormone excess and deficiency patients were analysed with each calibration. RESULTS: The seven calibration curves had different slopes leading to markedly different patient results. The largest differences in IGF-1 concentration from the median (interquartile range) was observed with the calibrator in water and the calibrator in RP (336.4 [279.6-417.0] vs. 112.5 [71.2-171.2], p < 0.001). The smallest difference was observed with calibrators in FCTHP and BSA (141.8 [102.0-198.5] vs. 127.9 [86.9-186.0], p < 0.049). Compared to LC-MS with calibrators in FCTHP, immunoassays showed relevant proportional bias (range: -43% to -68%), constant bias (range: 22.84 to 57.29 ng/ml) and pronounced scatter. Comparing the immunoassays with each other revealed proportional bias of up to 24%. CONCLUSIONS: The calibrator matrix is critical for the measurement of IGF-1 by LC-MS. Regardless of the calibrator matrix, LC-MS shows poor agreement with immunoassays. Also, the agreement between different immunoassays is variable.


Assuntos
Acromegalia , Fator de Crescimento Insulin-Like I , Humanos , Animais , Ratos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Hormônio do Crescimento , Calibragem , Carvão Vegetal
11.
Metabolites ; 12(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35448478

RESUMO

Rett syndrome (RTT) is defined as a rare disease caused by mutations of the methyl-CpG binding protein 2 (MECP2). It is one of the most common causes of genetic mental retardation in girls, characterized by normal early psychomotor development, followed by severe neurologic regression. Hitherto, RTT lacks a specific biomarker, but altered lipid homeostasis has been found in RTT model mice as well as in RTT patients. We performed LC-MS/MS lipidomics analysis to investigate the cerebrospinal fluid (CSF) and plasma composition of patients with RTT for biochemical variations compared to healthy controls. In all seven RTT patients, we found decreased CSF cholesterol levels compared to age-matched controls (n = 13), whereas plasma cholesterol levels were within the normal range in all 13 RTT patients compared to 18 controls. Levels of phospholipid (PL) and sphingomyelin (SM) species were decreased in CSF of RTT patients, whereas the lipidomics profile of plasma samples was unaltered in RTT patients compared to healthy controls. This study shows that the CSF lipidomics profile is altered in RTT, which is the basis for future (functional) studies to validate selected lipid species as CSF biomarkers for RTT.

12.
J Am Chem Soc ; 144(14): 6237-6250, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35362954

RESUMO

Chronically elevated circulating fatty acid levels promote lipid accumulation in nonadipose tissues and cause lipotoxicity. Adipose triglyceride lipase (ATGL) critically determines the release of fatty acids from white adipose tissue, and accumulating evidence suggests that inactivation of ATGL has beneficial effects on lipotoxicity-driven disorders including insulin resistance, steatohepatitis, and heart disease, classifying ATGL as a promising drug target. Here, we report on the development and biological characterization of the first small-molecule inhibitor of human ATGL. This inhibitor, designated NG-497, selectively inactivates human and nonhuman primate ATGL but not structurally and functionally related lipid hydrolases. We demonstrate that NG-497 abolishes lipolysis in human adipocytes in a dose-dependent and reversible manner. The combined analysis of mouse- and human-selective inhibitors, chimeric ATGL proteins, and homology models revealed detailed insights into enzyme-inhibitor interactions. NG-497 binds ATGL within a hydrophobic cavity near the active site. Therein, three amino acid residues determine inhibitor efficacy and species selectivity and thus provide the molecular scaffold for selective inhibition.


Assuntos
Aciltransferases/antagonistas & inibidores , Adipócitos , Ácidos Graxos/metabolismo , Lipólise , Aciltransferases/metabolismo , Adipócitos/metabolismo , Animais , Humanos , Lipólise/fisiologia , Camundongos
13.
Food Chem ; 371: 131194, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600364

RESUMO

Styrian pumpkin seed oil is a conditioned green-colored oil renowned for nutty smell and taste. Due to α-linolenic acid (ALA) contents below 1% of total fatty acids and the prospect of nutritional health claims based on its potential oxidation products, we investigated the fate of ALA and product oxylipins in the course of down-stream processing of seeds and in oils. Lipidomic analyses with Lipid Data Analyzer 2.8.1 revealed: Processing did not change (1) main fatty acid composition in the oils, (2) amounts of triacylglycerol species, (3) structures of triacylglycerol molecular species containing ALA. (4) Minor precursor ALA in fresh Styrian and normal pumpkins produced 6 product phytoprostanes in either cultivar, quantitatively more in the latter. (5) In oil samples 7 phytoprostanes and 2 phytofurans were detected. The latter two are specific for their presence in pumpkin seed oils, of note, quantitatively more in conditioned oils than in cold-pressed native oils.


Assuntos
Cucurbita , Ácidos Graxos , Lipidômica , Estrutura Molecular , Oxilipinas , Óleos de Plantas , Sementes , Triglicerídeos , Ácido alfa-Linolênico
14.
J Lipid Res ; 62: 100104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34384788

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a common metabolic dysfunction leading to hepatic steatosis. However, NAFLD's global impact on the liver lipidome is poorly understood. Using high-resolution shotgun mass spectrometry, we quantified the molar abundance of 316 species from 22 major lipid classes in liver biopsies of 365 patients, including nonsteatotic patients with normal or excessive weight, patients diagnosed with NAFL (nonalcoholic fatty liver) or NASH (nonalcoholic steatohepatitis), and patients bearing common mutations of NAFLD-related protein factors. We confirmed the progressive accumulation of di- and triacylglycerols and cholesteryl esters in the liver of NAFL and NASH patients, while the bulk composition of glycerophospho- and sphingolipids remained unchanged. Further stratification by biclustering analysis identified sphingomyelin species comprising n24:2 fatty acid moieties as membrane lipid markers of NAFLD. Normalized relative abundance of sphingomyelins SM 43:3;2 and SM 43:1;2 containing n24:2 and n24:0 fatty acid moieties, respectively, showed opposite trends during NAFLD progression and distinguished NAFL and NASH lipidomes from the lipidome of nonsteatotic livers. Together with several glycerophospholipids containing a C22:6 fatty acid moiety, these lipids serve as markers of early and advanced stages of NAFL.


Assuntos
Lipidômica , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Methods Mol Biol ; 2306: 39-51, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954938

RESUMO

Lipidomics is the determination of big lipid assemblies by mass spectrometry. When using chromatography coupled high resolution mass spectrometry, lipids can be identified by exact mass, fragment spectra, and retention time. This protocol covers lipid extraction, LC-MS data acquisition by Orbitrap mass spectrometry and data processing by Lipid Data Analyzer, a custom developed open source software.


Assuntos
Lipidômica/métodos , Lipídeos/análise , Cromatografia Líquida , Biologia Computacional , Análise de Dados , Software , Espectrometria de Massas em Tandem
16.
Mass Spectrom Rev ; 40(3): 162-176, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32233039

RESUMO

The boost of research output in lipidomics during the last decade is tightly linked to improved instrumentation in mass spectrometry. Associated with this trend is the shift from low resolution-toward high-resolution lipidomics platforms. This review article summarizes the state of the art in the lipidomics field with a particular focus on the merits of high mass resolution. Following some theoretical considerations on the benefits of high mass resolution in lipidomics, it starts with a historical perspective on lipid analysis by sector instruments and moves further to today's instrumental approaches, including shotgun lipidomics, liquid chromatography-mass spectrometry, matrix-assisted laser desorption ionization-time-of-flight, and imaging lipidomics. Subsequently, several data processing and data analysis software packages are critically evaluated with all their pros and cons. Finally, this article emphasizes the importance and necessity of quality standards as the field evolves from its pioneering phase into a mature and robust omics technology and lists various initiatives for improving the applicability of lipidomics. © 2020 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd. Mass Spec Rev.


Assuntos
Lipidômica/métodos , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Humanos , Lipídeos/análise , Lipídeos/química , Software , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
17.
Metabolites ; 10(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854199

RESUMO

In the highly dynamic field of metabolomics, we have developed a method for the analysis of hydrophilic metabolites in various biological samples. Therefore, we used hydrophilic interaction chromatography (HILIC) for separation, combined with a high-resolution mass spectrometer (MS) with the aim of separating and analyzing a wide range of compounds. We used 41 reference standards with different chemical properties to develop an optimal chromatographic separation. MS analysis was performed with a set of pooled biological samples human cerebrospinal fluid (CSF), and human plasma. The raw data was processed in a first step with Compound Discoverer 3.1 (CD), a software tool for untargeted metabolomics with the aim to create a list of unknown compounds. In a second step, we combined the results obtained with our internally analyzed reference standard list to process the data along with the Lipid Data Analyzer 2.6 (LDA), a software tool for a targeted approach. In order to demonstrate the advantages of this combined target-list based and untargeted approach, we not only compared the relative standard deviation (%RSD) of the technical replicas of pooled plasma samples (n = 5) and pooled CSF samples (n = 3) with the results from CD, but also with XCMS Online, a well-known software tool for untargeted metabolomics studies. As a result of this study we could demonstrate with our HILIC-MS method that all standards could be either separated by chromatography, including isobaric leucine and isoleucine or with MS by different mass. We also showed that this combined approach benefits from improved precision compared to well-known metabolomics software tools such as CD and XCMS online. Within the pooled plasma samples processed by LDA 68% of the detected compounds had a %RSD of less than 25%, compared to CD and XCMS online (57% and 55%). The improvements of precision in the pooled CSF samples were even more pronounced, 83% had a %RSD of less than 25% compared to CD and XCMS online (28% and 8% compounds detected). Particularly for low concentration samples, this method showed a more precise peak area integration with its 3D algorithm and with the benefits of the LDAs graphical user interface for fast and easy manual curation of peak integration. The here-described method has the advantage that manual curation for larger batch measurements remains minimal due to the target list containing the information obtained by an untargeted approach.

18.
Anal Bioanal Chem ; 412(10): 2191-2209, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31820027

RESUMO

Lipids are amongst the most important organic compounds in living organisms, where they serve as building blocks for cellular membranes as well as energy storage and signaling molecules. Lipidomics is the science of the large-scale determination of individual lipid species, and the underlying analytical technology that is used to identify and quantify the lipidome is generally mass spectrometry (MS). This review article provides an overview of the crucial steps in MS-based lipidomics workflows, including sample preparation, either liquid-liquid or solid-phase extraction, derivatization, chromatography, ion-mobility spectrometry, MS, and data processing by various software packages. The associated concepts are discussed from a technical perspective as well as in terms of their application. Furthermore, this article sheds light on recent advances in the technology used in this field and its current limitations. Particular emphasis is placed on data quality assurance and adequate data reporting; some of the most common pitfalls in lipidomics are discussed, along with how to circumvent them.


Assuntos
Lipidômica/métodos , Lipídeos/química , Espectrometria de Massas/métodos , Animais , Humanos , Metabolismo dos Lipídeos , Lipídeos/isolamento & purificação , Extração em Fase Sólida
19.
Sci Adv ; 5(12): eaax9484, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31844670

RESUMO

Respiratory complex I is a redox-driven proton pump, accounting for a large part of the electrochemical gradient that powers mitochondrial adenosine triphosphate synthesis. Complex I dysfunction is associated with severe human diseases. Assembly of the one-megadalton complex I in the inner mitochondrial membrane requires assembly factors and chaperones. We have determined the structure of complex I from the aerobic yeast Yarrowia lipolytica by electron cryo-microscopy at 3.2-Å resolution. A ubiquinone molecule was identified in the access path to the active site. The electron cryo-microscopy structure indicated an unusual lipid-protein arrangement at the junction of membrane and matrix arms that was confirmed by molecular simulations. The structure of a complex I mutant and an assembly intermediate provide detailed molecular insights into the cause of a hereditary complex I-linked disease and complex I assembly in the inner mitochondrial membrane.


Assuntos
Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/ultraestrutura , Mitocôndrias/ultraestrutura , Yarrowia/ultraestrutura , Trifosfato de Adenosina/química , Complexo I de Transporte de Elétrons/genética , Humanos , Mitocôndrias/genética , Membranas Mitocondriais , Conformação Proteica , Yarrowia/genética
20.
Proc Natl Acad Sci U S A ; 115(24): 6225-6230, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29844165

RESUMO

Cancer cells are reprogrammed to consume large amounts of glucose to support anabolic biosynthetic pathways. However, blood perfusion and consequently the supply with glucose are frequently inadequate in solid cancers. PEPCK-M (PCK2), the mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK), has been shown by us and others to be functionally expressed and to mediate gluconeogenesis, the reverse pathway of glycolysis, in different cancer cells. Serine and ribose synthesis have been identified as downstream pathways fed by PEPCK in cancer cells. Here, we report that PEPCK-M-dependent glycerol phosphate formation from noncarbohydrate precursors (glyceroneogenesis) occurs in starved lung cancer cells and supports de novo glycerophospholipid synthesis. Using stable isotope-labeled glutamine and lactate, we show that PEPCK-M generates phosphoenolpyruvate and 3-phosphoglycerate, which are at least partially converted to glycerol phosphate and incorporated into glycerophospholipids (GPL) under glucose and serum starvation. This pathway is required to maintain levels of GPL, especially phosphatidylethanolamine (PE), as shown by stable shRNA-mediated silencing of PEPCK-M in H23 lung cancer cells. PEPCK-M shRNA led to reduced colony formation after starvation, and the effect was partially reversed by the addition of dioleyl-PE. Furthermore, PEPCK-M silencing abrogated cancer growth in a lung cancer cell xenograft model. In conclusion, glycerol phosphate formation for de novo GPL synthesis via glyceroneogenesis is a newly characterized anabolic pathway in cancer cells mediated by PEPCK-M under conditions of severe nutrient deprivation.


Assuntos
Glicerol/metabolismo , Neoplasias/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosfolipídeos/metabolismo , Células A549 , Animais , Glucose/metabolismo , Glutamina/metabolismo , Xenoenxertos , Humanos , Ácido Láctico/metabolismo , Masculino , Camundongos , Camundongos Nus , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfolipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA