Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Biol Chem ; : 107793, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39305962

RESUMO

Ubiquitin-Specific Peptidases (USPs) are the main members of deubiquitinases (DUBs) that catalyze removing ubiquitin chains from target proteins, thereby modulating their half-life and function. Enzymatic activity of USP21 regulates protein degradation which is critical for maintaining cell homeostasis. USP21 determines the stability of oncogenic proteins and therefore is implicated in carcinogenesis. In this study, we investigated the effect of USP21 deletion on cancer cell metabolism. Transcriptomic and proteomic analysis of USP21 knockout HAP-1 cells revealed that endogenous USP21 is critical for the expression of genes and proteins involved in mitochondrial function. Additionally, we have found that deletion of USP21 reduced STAT3 activation and STAT3-dependent gene and protein expression in cancer cells. Genetic deletion of USP21 impaired mitochondrial respiration and disturbed ATP production. This resulted in cellular consequences such as inhibition of cell proliferation and migration. Presented results provide new insights into the biology of USP21, suggesting novel mechanisms for controlling STAT3 activity and mitochondrial function in tumor cells. Taken together, our findings indicate that targeting USP21 dysregulates the energy status of cancer cells offering new perspectives for anti-cancer therapy.

2.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298386

RESUMO

Muscular dystrophies are inherited neuromuscular diseases, resulting in progressive disability and often affecting life expectancy. The most severe, common types are Duchenne muscular dystrophy (DMD) and Limb-girdle sarcoglycanopathy, which cause advancing muscle weakness and wasting. These diseases share a common pathomechanism where, due to the loss of the anchoring dystrophin (DMD, dystrophinopathy) or due to mutations in sarcoglycan-encoding genes (LGMDR3 to LGMDR6), the α-sarcoglycan ecto-ATPase activity is lost. This disturbs important purinergic signaling: An acute muscle injury causes the release of large quantities of ATP, which acts as a damage-associated molecular pattern (DAMP). DAMPs trigger inflammation that clears dead tissues and initiates regeneration that eventually restores normal muscle function. However, in DMD and LGMD, the loss of ecto-ATPase activity, that normally curtails this extracellular ATP (eATP)-evoked stimulation, causes exceedingly high eATP levels. Thus, in dystrophic muscles, the acute inflammation becomes chronic and damaging. The very high eATP over-activates P2X7 purinoceptors, not only maintaining the inflammation but also tuning the potentially compensatory P2X7 up-regulation in dystrophic muscle cells into a cell-damaging mechanism exacerbating the pathology. Thus, the P2X7 receptor in dystrophic muscles is a specific therapeutic target. Accordingly, the P2X7 blockade alleviated dystrophic damage in mouse models of dystrophinopathy and sarcoglycanopathy. Therefore, the existing P2X7 blockers should be considered for the treatment of these highly debilitating diseases. This review aims to present the current understanding of the eATP-P2X7 purinoceptor axis in the pathogenesis and treatment of muscular dystrophies.


Assuntos
Distrofia Muscular de Duchenne , Sarcoglicanopatias , Camundongos , Animais , Receptores Purinérgicos P2X7/genética , Sarcoglicanopatias/patologia , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Trifosfato de Adenosina , Inflamação/patologia , Músculo Esquelético/patologia
3.
Sci Rep ; 13(1): 9333, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291185

RESUMO

Mortality of Duchenne Muscular Dystrophy (DMD) is a consequence of progressive wasting of skeletal and cardiac muscle, where dystrophinopathy affects not only muscle fibres but also myogenic cells. Elevated activity of P2X7 receptors and increased store-operated calcium entry have been identified in myoblasts from the mdx mouse model of DMD. Moreover, in immortalized mdx myoblasts, increased metabotropic purinergic receptor response was found. Here, to exclude any potential effects of cell immortalization, we investigated the metabotropic response in primary mdx and wild-type myoblasts. Overall, analyses of receptor transcript and protein levels, antagonist sensitivity, and cellular localization in these primary myoblasts confirmed the previous data from immortalised cells. However, we identified significant differences in the pattern of expression and activity of P2Y receptors and the levels of the "calcium signalling toolkit" proteins between mdx and wild-type myoblasts isolated from different muscles. These results not only extend the earlier findings on the phenotypic effects of dystrophinopathy in undifferentiated muscle but, importantly, also reveal that these changes are muscle type-dependent and endure in isolated cells. This muscle-specific cellular impact of DMD may not be limited to the purinergic abnormality in mice and needs to be taken into consideration in human studies.


Assuntos
Cálcio , Distrofia Muscular de Duchenne , Camundongos , Humanos , Animais , Camundongos Endogâmicos mdx , Cálcio/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Mioblastos/metabolismo , Sinalização do Cálcio , Miocárdio/metabolismo , Receptores Purinérgicos/metabolismo , Músculo Esquelético/metabolismo
4.
Cells ; 12(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36611971

RESUMO

INTRODUCTION: One of the key factors that may influence the therapeutic potential of mesenchymal stem/stromal cells (MSCs) is their metabolism. The switch between mitochondrial respiration and glycolysis can be affected by many factors, including the oxygen concentration and the spatial form of culture. This study compared the metabolic features of adipose-derived mesenchymal stem/stromal cells (ASCs) and dedifferentiated fat cells (DFATs) cultivated as monolayer or spheroid culture under 5% O2 concentration (physiological normoxia) and their impact on MSCs therapeutic abilities. RESULTS: We observed that the cells cultured as spheroids had a slightly lower viability and a reduced proliferation rate but a higher expression of the stemness-related transcriptional factors compared to the cells cultured in monolayer. The three-dimensional culture form increased mtDNA content, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR), especially in DFATs-3D population. The DFATs spheroids also demonstrated increased levels of Complex V proteins and higher rates of ATP production. Moreover, increased reactive oxygen species and lower intracellular lactic acid levels were also found in 3D culture. CONCLUSION: Our results may suggest that metabolic reconfiguration accompanies the transition from 2D to 3D culture and the processes of both mitochondrial respiration and glycolysis become more active. Intensified metabolism might be associated with the increased demand for energy, which is needed to maintain the expression of pluripotency genes and stemness state.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Mesenquimais , Humanos , Técnicas de Cultura de Células/métodos , Tecido Adiposo/metabolismo , Células Cultivadas , Esferoides Celulares , Células-Tronco Mesenquimais/metabolismo
5.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203423

RESUMO

An increased concentration of palmitate in circulation is one of the most harmful factors in obesity. The von Willebrand factor (vWF), a protein involved in haemostasis, is produced and secreted by the vascular endothelium. An increased level of vWF in obese patients is associated with thrombosis and cardiovascular disease. The aim of this study was to investigate a palmitate effect on vWF in endothelial cells and understand the mechanisms of palmitate-activated signalling. Human umbilical vein endothelial cells (HUVECs) incubated in the presence of palmitate, exhibited an increased VWF gene expression, vWF protein maturation, and stimulated vWF secretion. Cardamonin, a Nuclear Factor kappa B (NF-κB) inhibitor, abolished the palmitate effect on VWF expression. The inhibition of Toll-like receptor (TLR) 2 with C29 resulted in the TLR4 overactivation in palmitate-treated cells. Palmitate, in the presence of TLR4 inhibitor TAK-242, leads to a higher expression of TLR6, CD36, and TIRAP. The silencing of TLR4 resulted in an increase in TLR2 level and vice versa. The obtained results indicate a potential mechanism of obesity-induced thrombotic complication caused by fatty acid activation of NF-κB signalling and vWF upregulation and help to identify various compensatory mechanisms related to TLR4 signal transduction.


Assuntos
NF-kappa B , Fator de von Willebrand , Humanos , Fator de von Willebrand/genética , Células Endoteliais da Veia Umbilical Humana , Receptor 4 Toll-Like/genética , Receptores Toll-Like , Proteínas I-kappa B , Obesidade
6.
Int J Biochem Cell Biol ; 151: 106292, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36038127

RESUMO

This study aimed to investigate the putative role of nicotinamide N-methyltransferase in the metabolic response of human aortic endothelial cells. This enzyme catalyses S-adenosylmethionine-mediated methylation of nicotinamide to methylnicotinamide. This reaction is accompanied by the reduction of the intracellular nicotinamide and S-adenosylmethionine content. This may affect NAD+ synthesis and various processes of methylation, including epigenetic modifications of chromatin. Particularly high activity of nicotinamide N-methyltransferase is detected in liver, many neoplasms as well as in various cells in stressful conditions. The elevated nicotinamide N-methyltransferase content was also found in endothelial cells treated with statins. Although the exogenous methylnicotinamide has been postulated to induce a vasodilatory response, the specific metabolic role of nicotinamide N-methyltransferase in vascular endothelium is still unclear. Treatment of endothelial cells with bacterial lipopolysaccharide evokes several metabolic and functional consequences which built a multifaceted physiological response of endothelium to bacterial infection. Among the spectrum of biochemical changes substantially elevated protein level of nicotinamide N-methyltransferase was particularly intriguing. Here it has been shown that silencing of the nicotinamide N-methyltransferase gene influences several changes which are observed in cells treated with lipopolysaccharide. They include altered energy metabolism and rearrangement of the mitochondrial network. A complete explanation of the mechanisms behind the protective consequences of the nicotinamide N-methyltransferase deficiency in cells treated with lipopolysaccharide needs further investigation.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Nicotinamida N-Metiltransferase , Cromatina/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Metabolismo Energético , Humanos , Lipopolissacarídeos/farmacologia , NAD/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacologia , Nicotinamida N-Metiltransferase/genética , Nicotinamida N-Metiltransferase/metabolismo , S-Adenosilmetionina/metabolismo
7.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681707

RESUMO

Duchenne muscular dystrophy (DMD) leads to disability and death in young men. This disease is caused by mutations in the DMD gene encoding diverse isoforms of dystrophin. Loss of full-length dystrophins is both necessary and sufficient for causing degeneration and wasting of striated muscles, neuropsychological impairment, and bone deformities. Among this spectrum of defects, abnormalities of calcium homeostasis are the common dystrophic feature. Given the fundamental role of Ca2+ in all cells, this biochemical alteration might be underlying all the DMD abnormalities. However, its mechanism is not completely understood. While abnormally elevated resting cytosolic Ca2+ concentration is found in all dystrophic cells, the aberrant mechanisms leading to that outcome have cell-specific components. We probe the diverse aspects of calcium response in various affected tissues. In skeletal muscles, cardiomyocytes, and neurons, dystrophin appears to serve as a scaffold for proteins engaged in calcium homeostasis, while its interactions with actin cytoskeleton influence endoplasmic reticulum organisation and motility. However, in myoblasts, lymphocytes, endotheliocytes, and mesenchymal and myogenic cells, calcium abnormalities cannot be clearly attributed to the loss of interaction between dystrophin and the calcium toolbox proteins. Nevertheless, DMD gene mutations in these cells lead to significant defects and the calcium anomalies are a symptom of the early developmental phase of this pathology. As the impaired calcium homeostasis appears to underpin multiple DMD abnormalities, understanding this alteration may lead to the development of new therapies. In fact, it appears possible to mitigate the impact of the abnormal calcium homeostasis and the dystrophic phenotype in the total absence of dystrophin. This opens new treatment avenues for this incurable disease.


Assuntos
Cálcio/metabolismo , Distrofia Muscular de Duchenne/patologia , Sinalização do Cálcio , Distrofina/química , Distrofina/genética , Distrofina/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo
8.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445210

RESUMO

Ischemic episodes are a leading cause of death worldwide with limited therapeutic interventions. The current study explored mitochondrial phosphate-activated glutaminase (GLS1) activity modulation by PKCßII through GC-MS untargeted metabolomics approach. Mitochondria were used to elucidate the endogenous resistance of hippocampal CA2-4 and dentate gyrus (DG) to transient ischemia and reperfusion in a model of ischemic episode in gerbils. In the present investigation, male gerbils were subjected to bilateral carotids occlusion for 5 min followed by reperfusion (IR). Gerbils were randomly divided into three groups as vehicle-treated sham control, vehicle-treated IR and PKCßII specific inhibitor peptide ßIIV5-3-treated IR. Vehicle or ßIIV5-3 (3 mg/kg, i.v.) were administered at the moment of reperfusion. The gerbils hippocampal tissue were isolated at various time of reperfusion and cell lysates or mitochondria were isolated from CA1 and CA2-4,DG hippocampal regions. Recombinant proteins PKCßII and GLS1 were used in in vitro phosphorylation reaction and organotypic hippocampal cultures (OHC) transiently exposed to NMDA (25 µM) to evaluate the inhibition of GLS1 on neuronal viability. PKCßII co-precipitates with GAC (GLS1 isoform) in CA2-4,DG mitochondria and phosphorylates GLS1 in vitro. Cell death was dose dependently increased when GLS1 was inhibited by BPTA while inhibition of mitochondrial pyruvate carrier (MPC) attenuated cell death in NMDA-challenged OHC. Fumarate and malate were increased after IR 1h in CA2-4,DG and this was reversed by ßIIV5-3 what correlated with GLS1 activity increases and earlier showed elevation of neuronal death (Krupska et al., 2017). The present study illustrates that CA2-4,DG resistance to ischemic episode at least partially rely on glutamine and glutamate utilization in mitochondria as a source of carbon to tricarboxylic acid cycle. This phenomenon depends on modulation of GLS1 activity by PKCßII and remodeling of MPC: all these do not occur in ischemia-vulnerable CA1.


Assuntos
Transtornos Cerebrovasculares/enzimologia , Glutaminase/metabolismo , Hipocampo/enzimologia , Mitocôndrias/enzimologia , Proteína Quinase C beta/metabolismo , Traumatismo por Reperfusão/enzimologia , Animais , Transtornos Cerebrovasculares/patologia , Gerbillinae , Hipocampo/patologia , Mitocôndrias/patologia , Ratos , Ratos Wistar , Traumatismo por Reperfusão/patologia
9.
J Appl Toxicol ; 41(7): 1076-1088, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33073877

RESUMO

Statins belong to the most often prescribed medications, which efficiently normalise hyperlipidaemia and prevent cardiovascular complications in obese and diabetic patients. However, beside expected therapeutic results based on the inhibition of 3-hydroxyl-3-methylglutaryl-CoA reductase, these drugs exert multiple side effects of poorly understood characteristic. In this study, side effects of pravastatin and atorvastatin on EA.hy926 endothelial cell line were investigated. It was found that both statins activate proinflammatory response, elevate nitric oxide and reactive oxygen species (ROS) generation and stimulate antioxidative response in these cells. Moreover, only slight stimulation of the mitochondrial biogenesis and significant changes in the mitochondrial network organisation have been noted. Although biochemical bases behind these effects are not clear, they may partially be explained as an elevation of AMP-activated protein kinase (AMPK) activity and an increased activating phosphorylation of sirtuin 1 (Sirt1), which were observed in statins-treated cells. In addition, both statins increased nicotinamide N-methyltransferase (NNMT) protein level that may explain a reduced fraction of methylated histone H3. Interestingly, a substantial reduction of the total level of histone H3 in cells treated with pravastatin but not atorvastatin was also observed. These results indicate a potential additional biochemical target for statins related to reduced histone H3 methylation due to increased NNMT protein level. Thus, NNMT may directly modify gene activity.


Assuntos
Anticolesterolemiantes/toxicidade , Atorvastatina/toxicidade , Nicotinamida N-Metiltransferase/metabolismo , Óxido Nítrico/metabolismo , Pravastatina/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Linhagem Celular , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Histonas/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Mitocôndrias/metabolismo , Pirróis
10.
Mol Neurobiol ; 58(4): 1621-1633, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33222147

RESUMO

The gerbil is a well-known model for studying cerebral ischemia. The CA1 of the hippocampus is vulnerable to 5 min of ischemia, while the CA2-4 and dentate gyrus (DG) are resistant to it. Short-lasting ischemia, a model of transient ischemic attacks in men, results in CA1 neuron death within 2-4 days of reperfusion. Untargeted metabolomics, using LC-QTOF-MS, was used to enrich the knowledge about intrinsic vulnerability and resistance of hippocampal regions and their early post-ischemic response (IR). In total, 30 significant metabolites were detected. In controls, taurine was significantly lower and guanosine monophosphate was higher in CA1, as compared to that in CA2-4,DG. LysoPG and LysoPE were more abundant in CA1, while LysoPI 18:0 was detected only in CA2-4,DG. After IR, a substantial decrease in the citric acid level in CA1, an accumulation of pipecolic acid in both regions, and opposite changes in the amount of PE and LysoPE were observed. The following metabolic pathways were identified as being differentially active in control CA1 vs. CA2-4,DG: metabolism of taurine and hypotaurine, glycerophospholipid, and purine. These results may indicate that a regulation of cell volume, altered structure of cell membranes, and energy metabolism differentiate hippocampal regions. Early post-ischemia, spatial differences in the metabolism of aminoacyl-tRNA biosynthesis, and amino acids and their metabolites with a predominance of those which upkeep their well-being in CA2-4,DG are shown. Presented results are consistent with genetic, morphological, and functional data, which may be useful in further study on endogenous mechanisms of neuroprotection and search for new targets for therapeutic interventions.


Assuntos
Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Metabolômica , Traumatismo por Reperfusão/metabolismo , Animais , Análise Discriminante , Gerbillinae , Análise dos Mínimos Quadrados , Masculino , Redes e Vias Metabólicas , Metaboloma , Especificidade de Órgãos
11.
Am J Pathol ; 190(1): 190-205, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31726040

RESUMO

Duchenne muscular dystrophy (DMD) causes severe disability and death of young men because of progressive muscle degeneration aggravated by sterile inflammation. DMD is also associated with cognitive and bone-function impairments. This complex phenotype results from the cumulative loss of a spectrum of dystrophin isoforms expressed from the largest human gene. Although there is evidence for the loss of shorter isoforms having impact in the central nervous system, their role in muscle is unclear. We found that at 8 weeks, the active phase of pathology in dystrophic mice, dystrophin-null mice (mdxßgeo) presented with a mildly exacerbated phenotype but without an earlier onset, increased serum creatine kinase levels, or decreased muscle strength. However, at 12 months, mdxßgeo diaphragm strength was lower, whereas fibrosis increased, compared with mdx. The most striking features of the dystrophin-null phenotype were increased ectopic myofiber calcification and altered macrophage infiltration patterns, particularly the close association of macrophages with calcified fibers. Ectopic calcification had the same temporal pattern of presentation and resolution in mdxßgeo and mdx muscles, despite significant intensity differences across muscle groups. Comparison of the rare dystrophin-null patients against those with mutations affecting full-length dystrophins may provide mechanistic insights for developing more effective treatments for DMD.


Assuntos
Calcinose/patologia , Distrofina/metabolismo , Fibrose/patologia , Macrófagos/imunologia , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/patologia , Calcificação Vascular/patologia , Animais , Calcinose/imunologia , Calcinose/metabolismo , Distrofina/genética , Fibrose/imunologia , Fibrose/metabolismo , Inflamação , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/imunologia , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/metabolismo , Calcificação Vascular/imunologia , Calcificação Vascular/metabolismo
12.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1138-1151, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30684640

RESUMO

Pathophysiology of Duchenne Muscular Dystrophy (DMD) is still elusive. Although progressive wasting of muscle fibres is a cause of muscle deterioration, there is a growing body of evidence that the triggering effects of DMD mutation are present at the earlier stage of muscle development and affect myogenic cells. Among these abnormalities, elevated activity of P2X7 receptors and increased store-operated calcium entry myoblasts have been identified in mdx mouse. Here, the metabotropic extracellular ATP/UTP-evoked response has been investigated. Sensitivity to antagonist, effect of gene silencing and cellular localization studies linked these elevated purinergic responses to the increased expression of P2Y2 but not P2Y4 receptors. These alterations have physiological implications as shown by reduced motility of mdx myoblasts upon treatment with P2Y2 agonist. However, the ultimate increase in intracellular calcium in dystrophic cells reflected complex alterations of calcium homeostasis identified in the RNA seq data and with significant modulation confirmed at the protein level, including a decrease of Gq11 subunit α, plasma membrane calcium ATP-ase, inositol-2,4,5-trisphosphate-receptor proteins and elevation of phospholipase Cß, sarco-endoplamatic reticulum calcium ATP-ase and sodium­calcium exchanger. In conclusion, whereas specificity of dystrophic myoblast excitation by extracellular nucleotides is determined by particular receptor overexpression, the intensity of such altered response depends on relative activities of downstream calcium regulators that are also affected by Dmd mutations. Furthermore, these phenotypic effects of DMD emerge as early as in undifferentiated muscle. Therefore, the pathogenesis of DMD and the relevance of current therapeutic approaches may need re-evaluation.


Assuntos
Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio/genética , Perfilação da Expressão Gênica/métodos , Mioblastos/metabolismo , Receptores Purinérgicos P2Y2/genética , Uridina Trifosfato/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Células Cultivadas , Distrofina/genética , Distrofina/metabolismo , Ontologia Genética , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Mutação , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Receptores Purinérgicos P2Y2/metabolismo , Uridina Trifosfato/farmacologia
13.
Int J Biochem Cell Biol ; 106: 57-67, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30471424

RESUMO

Previously we showed that a mild stimulation of EA.hy926 cells with tumour necrosis factor alpha (TNFα) activated mitochondrial biogenesis, probably as a mechanism preventing cell death. This was accompanied by an increased phosphorylation of eNOS and elevation of NO release. The aim of the present study was to explain the biochemical basis of this effect. Our results indicate that eNOS is the only enzyme catalysing NO generation in EA.hy926 cells, and TNFα stimulates its activity by activating AMP-activated protein kinase (AMPK). Inhibition of AMPK with Compound C prevents the TNFα-induced activatory phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177 and reduces the NO release. AMPK is activated by phosphorylation catalysed by liver kinase B1 (LKB1) and calcium/calmodulin-dependent protein kinase kinase beta (CaMKKß), which are phosphorylated and thereby activated in the presence of TNFα. Moreover, CaMKKß catalyses an activatory phosphorylation of sirtuin 1, which could deacetylate and activate eNOS both directly and indirectly by an elevating the LKB1 activity. TNFα hardly increases the nuclear fraction of sirtuin 1, thus its major activity is probably attributed to the cytosolic pool. This is in line with the elevated activity of eNOS. We conclude that the increased AMPK-dependent phosphorylation of eNOS at least partially explains the stimulation of NO generation by TNFα in EA.hy926 cells.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/biossíntese , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Ativação Enzimática/efeitos dos fármacos , Humanos
14.
Acta Neuropathol Commun ; 6(1): 27, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29642926

RESUMO

Duchenne muscular dystrophy (DMD) is the most common inherited muscle disorder that causes severe disability and death of young men. This disease is characterized by progressive muscle degeneration aggravated by sterile inflammation and is also associated with cognitive impairment and low bone density. Given that no current treatment can improve the long-term outcome, approaches with a strong translational potential are urgently needed. Duchenne muscular dystrophy (DMD) alters P2RX7 signaling in both muscle and inflammatory cells and inhibition of this receptor resulted in a significant attenuation of muscle and non-muscle symptoms in DMDmdx mouse model. As P2RX7 is an attractive target in a range of human diseases, specific antagonists have been developed. Yet, these will require lengthy safety testing in the pediatric population of Duchenne muscular dystrophy (DMD) patients. In contrast, Nucleoside Reverse Transcriptase Inhibitors (NRTIs) can act as P2RX7 antagonists and are drugs with an established safety record, including in children. We demonstrate here that AZT (Zidovudine) inhibits P2RX7 functions acting via the same allosteric site as other antagonists. Moreover, short-term AZT treatment at the peak of disease in DMDmdx mice attenuated the phenotype without any detectable side effects. Recovery was evident in the key parameters such as reduced sarcolemma permeability confirmed by lower serum creatine kinase levels and IgG influx into myofibres, decreased inflammatory cell numbers and inflammation markers in leg and heart muscles of treated mice. Moreover, this short-term therapy had some positive impact on muscle strength in vivo and no detrimental effect on mitochondria, which is the main side-effect of Nucleoside Reverse Transcriptase Inhibitors (NRTIs). Given these results, we postulate that AZT could be quickly re-purposed for the treatment of this highly debilitating and lethal disease. This approach is not constrained by causative DMD mutations and may be effective in alleviating both muscle and non-muscle abnormalities.


Assuntos
Antimetabólitos/uso terapêutico , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/terapia , Receptores Purinérgicos P2X7/metabolismo , Zidovudina/uso terapêutico , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Cálcio/metabolismo , Células Cultivadas , Colágeno Tipo IV/metabolismo , Creatina Quinase/sangue , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Modelos Moleculares , Força Muscular/efeitos dos fármacos , Músculos/efeitos dos fármacos , Músculos/metabolismo , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/genética , Mioblastos/efeitos dos fármacos
15.
J Mol Cell Biol ; 10(3): 229-242, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992079

RESUMO

P2X7 purinoceptor promotes survival or cytotoxicity depending on extracellular adenosine triphosphate (ATP) stimulus intensity controlling its ion channel or P2X7-dependent large pore (LP) functions. Mechanisms governing this operational divergence and functional idiosyncrasy are ill-understood. We have discovered a feedback loop where sustained activation of P2X7 triggers release of active matrix metalloproteinase 2 (MMP-2), which halts ion channel and LP responses via the MMP-2-dependent receptor cleavage. This mechanism operates in cells as diverse as macrophages, dystrophic myoblasts, P2X7-transfected HEK293, and human tumour cells. Given that serum-born MMP-2 activity also blocked receptor functions, P2X7 responses in vivo may decrease in organs with permeable capillaries. Therefore, this mechanism represents an important fine-tuning of P2X7 functions, reliant on both cell-autonomous and extraneous factors. Indeed, it allowed evasion from the ATP-induced cytotoxicity in macrophages and human cancer cells with high P2X7 expression levels. Finally, we demonstrate that P2X7 ablation eliminated gelatinase activity in inflamed dystrophic muscles in vivo. Thus, P2X7 antagonists could be used as an alternative to highly toxic MMP inhibitors in treatments of inflammatory diseases and cancers.


Assuntos
Metaloproteinase 2 da Matriz/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Distroglicanas/metabolismo , Células HEK293 , Humanos , Receptores de Hialuronatos/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mioblastos/metabolismo , Neoplasias/metabolismo , Proteólise , Células RAW 264.7
16.
Arch Biochem Biophys ; 634: 88-95, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29037962

RESUMO

A dyslipidaemia-related increase of the concentration of long-chain fatty acids in the plasma is an important pathological factor substantially increasing risk of serious consequences in vascular endothelium. Inflammatory response, atherosclerosis and insulin resistance seem the most severe. Palmitate at excessive concentrations has been shown to have a harmful effect on endothelial cells impairing NO generation, stimulating reactive oxygen species (ROS) formation and affecting their viability. On the other hand we found that palmitate applied for 48 h at 100 µM concentration which is sufficient to induce inflammatory response, increase ROS generation and reduce insulin sensitivity of EA.hy926 cells, unexpectedly also stimulates NO synthesis and increases mitochondrial mass, suggesting a pro-survival rather than anti-survival effect. This finding unveils a potential protective mechanism allowing cells to maintain their energy homeostasis under conditions of a moderate deregulation of lipid metabolism.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Células Endoteliais/fisiologia , Mitocôndrias/fisiologia , Palmitatos/administração & dosagem , Espécies Reativas de Oxigênio/imunologia , Linhagem Celular , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Óxido Nítrico/metabolismo
17.
Arch Biochem Biophys ; 593: 50-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26869201

RESUMO

Mutations in the NPC1 or NPC2 genes lead to Niemann-Pick type C (NPC) disease, a rare lysosomal storage disorder characterized by progressive neurodegeneration. These mutations result in cholesterol and glycosphingolipid accumulation in the late endosomal/lysosomal compartment. Complications in the storage of cholesterol in NPC1 mutant cells are associated with other anomalies, such as altered distribution of intracellular organelles and properties of the plasma membrane. The pathomechanism of NPC disease is largely unknown. Interestingly, other storage diseases such as Gaucher and Farber diseases are accompanied by severe mitochondrial dysfunction. This prompted us to investigate the effect of absence or dysfunction of the NPC1 protein on mitochondrial properties to confirm or deny a putative relationship between NPC1 mutations and mitochondrial function. This study was performed on primary skin fibroblasts derived from skin biopsies of two NPC patients, carrying mutations in the NPC1 gene. We observed altered organization of mitochondria in NPC1 mutant cells, significant enrichment in mitochondrial cholesterol content, increased respiration, altered composition of the respiratory chain complex, and substantial reduction in cellular ATP level. Thus, a primary lysosomal defect in NPC1 mutant fibroblasts is accompanied by deregulation of the organization and function of the mitochondrial network.


Assuntos
Fibroblastos/metabolismo , Mitocôndrias/fisiologia , Doenças de Niemann-Pick/patologia , Trifosfato de Adenosina/biossíntese , Adulto , Proteínas de Transporte/genética , Estudos de Casos e Controles , Colesterol/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Fibroblastos/ultraestrutura , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Glicoproteínas de Membrana/genética , Potencial da Membrana Mitocondrial , Mitocôndrias/ultraestrutura , Mutação , Proteína C1 de Niemann-Pick , Fosforilação Oxidativa , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Pele/patologia
19.
Postepy Biochem ; 62(2): 149-157, 2016.
Artigo em Polonês | MEDLINE | ID: mdl-28132466

RESUMO

Results of an intensive research performed during last 25 years have revealed that an understanding of biochemical and molecular principles of oxidative phosphorylation has not finished the streak of ground-breaking discoveries of newly identified mitochondrial functions in numerous cellular processes. Among other things it has been shown that mitochondria undergo reversible fission and fusion processes, and may form a complex network which functionally and structurally interacts with the endoplasmic reticulum membranes and probably also other organelles. An organization of mitochondrial network is closely controlled and is of high importance for numerous intracellular processes to occur properly. In this review, mitofusin 2 - one of a few proteins involved in a maintenance of an appropriate mitochondrial architecture, and in the consequence in the regulation of mitochondrial metabolism and calcium signalling, the controlling of the mitochondrial DNA level, and the regulation of cell proliferation and differentiation is the focus. Mutations within mitofusin 2-encoding gene are a cause of Charcot-Marie-Tooh 2A - type neuropathies while an affected expression of this protein seems to be related to neoplasia, type 2 diabetes, or vascular hyperplasia. Numerous experimental data confirm pleiotropic effects of mitofisin 2 in animal cells.


Assuntos
GTP Fosfo-Hidrolases/fisiologia , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/fisiologia , Cálcio/metabolismo , Proliferação de Células , DNA Mitocondrial , Humanos , Mitocôndrias/fisiologia
20.
Pharmacol Rep ; 67(4): 704-10, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26321271

RESUMO

Endothelial cells play an important physiological role in vascular homeostasis. They are also the first barrier that separates blood from deeper layers of blood vessels and extravascular tissues. Thus, they are exposed to various physiological blood components as well as challenged by pathological stimuli, which may exert harmful effects on the vascular system by stimulation of excessive generation of reactive oxygen species (ROS). The major sources of ROS are NADPH oxidase and mitochondrial respiratory chain complexes. Modulation of mitochondrial energy metabolism in endothelial cells is thought to be a promising target for therapy in various cardiovascular diseases. Uncoupling protein 2 (UCP2) is a regulator of mitochondrial ROS generation and can antagonise oxidative stress-induced endothelial dysfunction. Several studies have revealed the important role of UCP2 in hyperglycaemia-induced modifications of mitochondrial function in endothelial cells. Additionally, potassium fluxes through the inner mitochondrial membrane, which are involved in ROS synthesis, affect the mitochondrial volume and change both the mitochondrial membrane potential and the transport of calcium into the mitochondria. In this review, we concentrate on the mitochondrial role in the cytoprotection phenomena of endothelial cells.


Assuntos
Endotélio Vascular/metabolismo , Mitocôndrias/metabolismo , Animais , Fármacos Cardiovasculares/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Canais de Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA