Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(45): e2404555121, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39475644

RESUMO

The use of lipid nanoparticles (LNPs) for therapeutic RNA delivery has gained significant interest, particularly highlighted by recent milestones such as the approval of Onpattro and two mRNA-based SARS-CoV-2 vaccines. However, despite substantial advancements in this field, our understanding of the structure and internal organization of RNA-LNPs -and their relationship to efficacy, both in vitro and in vivo- remains limited. In this study, we present a coarse-grained molecular dynamics (MD) approach that allows for the simulations of full-size LNPs. By analyzing MD-derived structural characteristics in conjunction with cellular experiments, we investigate the effect of critical parameters, such as pH and composition, on LNP structure and potency. Additionally, we examine the mobility and chemical environment within LNPs at a molecular level. Our findings highlight the significant impact that LNP composition and internal molecular mobility can have on key stages of LNP-based intracellular RNA delivery.


Assuntos
Lipídeos , Simulação de Dinâmica Molecular , Nanopartículas , SARS-CoV-2 , Nanopartículas/química , Concentração de Íons de Hidrogênio , Lipídeos/química , Humanos , RNA/química , COVID-19/virologia , Lipossomos
2.
Noncoding RNA ; 9(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36649031

RESUMO

Traditionally, small molecule-based drug discovery has mainly focused on proteins as the drug target. Opening RNA as an additional target space for small molecules offers the possibility to therapeutically modulate disease-driving non-coding RNA targets as well as mRNA of otherwise undruggable protein targets. MALAT1 is a highly conserved long-noncoding RNA whose overexpression correlates with poor overall patient survival in some cancers. We report here a fluorescence in-situ hybridization-based high-content imaging screen to identify small molecules that modulate the oncogenic lncRNA MALAT1 in a cellular setting. From a library of FDA approved drugs and known bioactive molecules, we identified two compounds, including Niclosamide, an FDA-approved drug, that lead to a rapid decrease of MALAT1 nuclear levels with good potency. Mode-of-action studies suggest a novel cellular regulatory pathway that impacts MALAT1 lncRNA nuclear levels by GSK3B activation and the involvement of the RNA modulating family of heterogenous nuclear ribonucleoproteins (hnRNPs). This study is the basis for the identification of novel targets that lead to a reduction of the oncogenic lncRNA MALAT1 in a cancer setting.

3.
Nat Methods ; 18(11): 1294-1303, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34725485

RESUMO

Spheroids are three-dimensional cellular models with widespread basic and translational application across academia and industry. However, methodological transparency and guidelines for spheroid research have not yet been established. The MISpheroID Consortium developed a crowdsourcing knowledgebase that assembles the experimental parameters of 3,058 published spheroid-related experiments. Interrogation of this knowledgebase identified heterogeneity in the methodological setup of spheroids. Empirical evaluation and interlaboratory validation of selected variations in spheroid methodology revealed diverse impacts on spheroid metrics. To facilitate interpretation, stimulate transparency and increase awareness, the Consortium defines the MISpheroID string, a minimum set of experimental parameters required to report spheroid research. Thus, MISpheroID combines a valuable resource and a tool for three-dimensional cellular models to mine experimental parameters and to improve reproducibility.


Assuntos
Biomarcadores Tumorais/genética , Proliferação de Células , Bases de Conhecimento , Neoplasias/patologia , Software , Esferoides Celulares/patologia , Microambiente Tumoral , Técnicas de Cultura de Células/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/classificação , Neoplasias/metabolismo , RNA-Seq , Reprodutibilidade dos Testes , Esferoides Celulares/imunologia , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas
4.
iScience ; 23(9): 101517, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32927263

RESUMO

Structural mutants of p53 induce global p53 protein destabilization and misfolding, followed by p53 protein aggregation. First evidence indicates that p53 can be part of protein condensates and that p53 aggregation potentially transitions through a condensate-like state. We show condensate-like states of fluorescently labeled structural mutant p53 in the nucleus of living cancer cells. We furthermore identified small molecule compounds that interact with the p53 protein and lead to dissolution of p53 structural mutant condensates. The same compounds lead to condensation of a fluorescently tagged p53 DNA-binding mutant, indicating that the identified compounds differentially alter p53 condensation behavior depending on the type of p53 mutation. In contrast to p53 aggregation inhibitors, these compounds are active on p53 condensates and do not lead to mutant p53 reactivation. Taken together our study provides evidence for structural mutant p53 condensation in living cells and tools to modulate this process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA