Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(13): 133401, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33034470

RESUMO

We investigate the metastable repulsive branch of a mobile impurity coupled to a degenerate Fermi gas via short-range interactions. We show that the quasiparticle lifetime of this repulsive Fermi polaron can be experimentally probed by driving Rabi oscillations between weakly and strongly interacting impurity states. Using a time-dependent variational approach, we find that we can accurately model the impurity Rabi oscillations that were recently measured for repulsive Fermi polarons in both two and three dimensions. Crucially, our theoretical description does not include relaxation processes to the lower-lying attractive branch. Thus, the theory-experiment agreement demonstrates that the quasiparticle lifetime is dominated by many-body dephasing within the upper repulsive branch rather than by relaxation from the upper branch itself. Our findings shed light on recent experimental observations of persistent repulsive correlations, and have important consequences for the nature and stability of the strongly repulsive Fermi gas.

2.
Science ; 350(6267): 1505-8, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26680193

RESUMO

The Josephson effect is a macroscopic quantum phenomenon that reveals the broken symmetry associated with any superfluid state. Here we report on the observation of the Josephson effect between two fermionic superfluids coupled through a thin tunneling barrier. We show that the relative population and phase are canonically conjugate dynamical variables throughout the crossover from the molecular Bose-Einstein condensate (BEC) to the Bardeen-Cooper-Schrieffer (BCS) superfluid regime. For larger initial excitations from equilibrium, the dynamics of the superfluids become dissipative, which we ascribe to the propagation of vortices through the superfluid bulk. Our results highlight the robust nature of resonant superfluids.

3.
Phys Rev Lett ; 112(7): 075302, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579609

RESUMO

We investigate a mixture of ultracold fermionic K40 atoms and weakly bound Li6K40 dimers on the repulsive side of a heteronuclear atomic Feshbach resonance. By radio-frequency spectroscopy we demonstrate that the normally repulsive atom-dimer interaction is turned into a strong attraction. The phenomenon can be understood as a three-body effect in which two heavy K40 fermions exchange the light Li6 atom, leading to attraction in odd partial-wave channels (mainly p wave). Our observations show that mass imbalance in a fermionic system can profoundly change the character of interactions as compared to the well-established mass-balanced case.

4.
Rep Prog Phys ; 77(3): 034401, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24553400

RESUMO

In this review, we discuss the properties of a few impurity atoms immersed in a gas of ultracold fermions--the so-called Fermi polaron problem. On one hand, this many-body system is appealing because it can be described almost exactly with simple diagrammatic and/or variational theoretical approaches. On the other, it provides a quantitatively reliable insight into the phase diagram of strongly interacting population-imbalanced quantum mixtures. In particular, we show that the polaron problem can be applied to the study of itinerant ferromagnetism, a long-standing problem in quantum mechanics.

5.
Nature ; 453(7197): 895-8, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18548066

RESUMO

Anderson localization of waves in disordered media was originally predicted fifty years ago, in the context of transport of electrons in crystals. The phenomenon is much more general and has been observed in a variety of systems, including light waves. However, Anderson localization has not been observed directly for matter waves. Owing to the high degree of control over most of the system parameters (in particular the interaction strength), ultracold atoms offer opportunities for the study of disorder-induced localization. Here we use a non-interacting Bose-Einstein condensate to study Anderson localization. The experiment is performed with a one-dimensional quasi-periodic lattice-a system that features a crossover between extended and exponentially localized states, as in the case of purely random disorder in higher dimensions. Localization is clearly demonstrated through investigations of the transport properties and spatial and momentum distributions. We characterize the crossover, finding that the critical disorder strength scales with the tunnelling energy of the atoms in the lattice. This controllable system may be used to investigate the interplay of disorder and interaction (ref. 7 and references therein), and to explore exotic quantum phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA