Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Materials (Basel) ; 16(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37297187

RESUMO

The carbonation of alkaline industrial wastes is a pressing issue that is aimed at reducing CO2 emissions while promoting a circular economy. In this study, we explored the direct aqueous carbonation of steel slag and cement kiln dust in a newly developed pressurized reactor that operated at 15 bar. The goal was to identify the optimal reaction conditions and the most promising by-products that can be reused in their carbonated form, particularly in the construction industry. We proposed a novel, synergistic strategy for managing industrial waste and reducing the use of virgin raw materials among industries located in Lombardy, Italy, specifically Bergamo-Brescia. Our initial findings are highly promising, with argon oxygen decarburization (AOD) slag and black slag (sample 3) producing the best results (70 g CO2/kg slag and 76 g CO2/kg slag, respectively) compared with the other samples. Cement kiln dust (CKD) yielded 48 g CO2/kg CKD. We showed that the high concentration of CaO in the waste facilitated carbonation, while the presence of Fe compounds in large amounts caused the material to be less soluble in water, affecting the homogeneity of the slurry.

2.
Environ Res ; 217: 114805, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375507

RESUMO

The carbonation of alkaline wastes is an interesting research field that may offer opportunities for CO2 reduction. However, the literature is mainly devoted to studying different waste sequestration capabilities, with lame attention to the reliability of the data about CO2 reduction, or to the possibilities to increase the amount of absorbed CO2. In this work, for the first time, the limitation of some methods used in literature to quantify the amount of sequestered CO2 is presented, and the advantages of using suitable XRD strategies to evaluate the crystalline calcium carbonate phases are demonstrated. In addition, a zero-waste approach, aiming to stabilize the waste by coupling the use of by-products and the possibility to obtain CO2 sequestration, was considered. In particular, for the first time, the paper investigates the differences in natural and accelerated carbonation (NC and AC) mechanisms, occurring when municipal solid waste incineration (MSWI) fly ash is stabilized by using the bottom ash with the same origin, and other by-products. The stabilization mechanism was attributed to pozzolanic reactions with the formation of calcium silicate hydrates or calcium aluminate hydrate phases that can react with CO2 to produce calcium carbonate phases. The work shows that during the AC, crystalline calcium carbonate was quickly formed by the reaction of Ca(OH)2 and CaClOH with CO2. On the contrary, in NC, carbonation occurred due to reactions also with the amorphous Ca. The sequestration capability of this technology, involving the mixing of waste and by-products, is up to 165 gCO2/Kg MSWI FA, which is higher than the literature data.


Assuntos
Metais Pesados , Eliminação de Resíduos , Cinza de Carvão , Incineração , Resíduos Sólidos/análise , Dióxido de Carbono/análise , Metais Pesados/análise , Reprodutibilidade dos Testes , Carbonatos/análise , Carbonatos/química , Carbonato de Cálcio/química , Eliminação de Resíduos/métodos , Material Particulado/química
3.
Environ Res ; 216(Pt 3): 114632, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347397

RESUMO

The ubiquitous distribution of plastics and microplastics (MPs) and their resistance to biological and chemical decay is adversely affecting the environment. MPs are considered as emerging contaminants of concern in all the compartments, including terrestrial, aquatic, and atmospheric environments. Efficient monitoring, detection, and removal technologies require reliable methods for a qualitative and quantitative analysis of MPs, considering point-of-need testing a new evolution and a great trend at the market level. In the last years, portable spectrometers have gained popularity thanks to the excellent capability for fast and on-site measurements. Ultra-compact spectrometers coupled with chemometric tools have shown great potential in the polymer analysis, showing promising applications in the environmental field. Nevertheless, systematic studies are still required, in particular for the identification and quantification of fragments at the microscale. This study demonstrates the proof-of-concept of a Miniaturized Near-Infrared (MicroNIR) spectrometer coupled with chemometrics for the quantitative analysis of ternary mixtures of MPs. Polymers were chosen representing the three most common polymers found in the environment (polypropylene, polyethene, and polystyrene). Daily used plastic items were mechanically fragmented at laboratory scale mimicking the environmental breakdown process and creating "true-to-life" MPs for the assessment of analytical methods for MPs identification and quantification. The chemical nature of samples before and after fragmentation was checked by Raman spectroscopy. Sixty three different mixtures were prepared: 42 for the training set and 21 for the test set. Blends were investigated by the MicroNIR spectrometer, and the dataset was analysed using Principal Component Analysis (PCA) and Partial Least Square (PLS) Regression. PCA score plot showed a samples distribution consistent with their composition. Quantitative analysis by PLS showed the great capability prediction of the polymer's percentage in the mixtures, with R2 greater than 0.9 for the three analytes and a low and comparable Root-Mean Square Error. In addition, the developed model was challenged with environmental weathered materials to validate the system with real plastic pollution. The findings show the feasibility of employing a portable tool in conjunction with chemometrics to quantify the most abundant forms of MPs found in the environment.


Assuntos
Microplásticos , Plásticos , Plásticos/análise , Quimiometria , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise dos Mínimos Quadrados
4.
Artigo em Inglês | MEDLINE | ID: mdl-35742654

RESUMO

In the last two years, the world has been overwhelmed by SARS-CoV-2. One of the most important ways to prevent the spread of the virus is the control of indoor conditions: from surface hygiene to ventilation. Regarding the indoor environments, monitoring the presence of the virus in the indoor air seems to be promising, since there is strong evidence that airborne transmission through infected droplets and aerosols is its dominant transmission route. So far, few studies report the successful detection of SARS-CoV-2 in the air; moreover, the lack of a standard guideline for air monitoring reduces the uniformity of the results and their usefulness in the management of the risk of virus transmission. In this work, starting from a critical analysis of the existing standards and guidelines for indoor air quality, we define a strategy to set-up indoor air sampling plans for the detection of SARS-CoV-2. The strategy is then tested through a case study conducted in two kindergartens in the metropolitan city of Milan, in Italy, involving a total of 290 children and 47 teachers from 19 classrooms. The results proved its completeness, effectiveness, and suitability as a key tool in the airborne SARS-CoV-2 infection risk management process. Future research directions are then identified and discussed.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Aerossóis , Poluição do Ar em Ambientes Fechados/prevenção & controle , COVID-19/diagnóstico , Criança , Humanos , SARS-CoV-2 , Ventilação
5.
Waste Manag ; 116: 147-156, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32799096

RESUMO

This paper reports a complete characterization of the lowest fractions of bottom ash derived from co-combustion of municipal solid waste with sewage sludge (COBA), with the aim to suggest suitable reuse strategies of this by-product. X-Ray Microanalysis is coupled with mineralogical characterization, based on X-Ray Diffraction and Rietveld refinement, to extract information about COBA crystalline and amorphous phases. The composition of different particle size fractions shows that amount of amorphous increases with the increase of fractions sizes. In particular, the finest COBA size fraction (<300 µm) shows more leachable heavy metals (i.e. Pb, and Zn) compared to the investigated fraction with the highest sizes (1400 µm). On the basis of their composition, lowest particle size fractions show a better hydraulic behavior compared to bottom ash obtained from incineration of only municipal solid waste, suggesting possible attractive COBA applications, as for example, Portland cement substitution. In addition, COBA with size fractions in the range of 1000-1400 µm are proposed to be used to produce glass and ceramic. Finally, due to its high amount of reactive amorphous phase (about 73% for fraction size of 1400 µm) COBA is used, in combination with other by-products (coal fly ash and flue gas desulphurization residues), to stabilize municipal solid waste incinerator fly ash produced at the same incinerator plant, following the azure chemistry principle of use a waste to stabilize another waste.


Assuntos
Cinza de Carvão , Metais Pesados , Incineração , Esgotos , Resíduos Sólidos/análise
6.
Materials (Basel) ; 12(17)2019 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-31450604

RESUMO

Mineral carbonation, involving reactions of alkaline earth oxides with CO2, has received great attention, as a potential carbon dioxide sequestration technology. Indeed, once converted into mineral carbonate, CO2 can be permanently stored in an inert phase. Several studies have been focalized to the utilization of industrial waste as a feedstock and the reuse of some by-products as possible materials for the carbonation reactions. In this work municipal solid waste incineration fly ash and other ashes, as bottom ash, coal fly ash, flue gas desulphurization residues, and silica fume, are stabilized by low-cost technologies. In this context, the CO2 is used as a raw material to favor the chemical stabilization of the wastes, by taking advantage of the pH reduction. Four different stabilization treatments at room temperature are performed and the carbonation reaction evaluated for three months. The crystalline calcium carbonate phase was quantified by the Rietveld analysis of X-ray diffraction (XRD) patterns. Results highlight that the proposed stabilization strategy promotes CO2 sequestration, with the formation of different calcium carbonate phases, depending on the wastes. This new sustainable and promising technology can be an alternative to more onerous mineral carbonation processes for the carbon dioxide sequestration.

7.
Materials (Basel) ; 12(17)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461858

RESUMO

Valorisation of the urban plastic waste in high-quality recyclates is an imperative challenge in the new paradigm of the circular economy. In this scenario, a key role in the improvement of the recycling process is exerted by the optimization of waste sorting. In spite of the enormous developments achieved in the field of automated sorting systems, the quest for the reduction of cross-contamination of incompatible polymers as well as a rapid and punctual sorting of the unmatched polymers has not been sufficiently developed. In this paper, we demonstrate that a miniaturized handheld near-infrared (NIR) spectrometer can be used to successfully fingerprint and classify different plastic polymers. The investigated urban plastic waste comprised polyethylene (PE), polypropylene (PP), poly(vinyl chloride) (PVC), poly(ethylene terephthalate) (PET), and poly(styrene) (PS), collected directly in a recycling plastic waste plant, without any kind of sample washing or treatment. The application of unsupervised and supervised chemometric tools such as principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) on the NIR dataset resulted in a complete classification of the polymer classes. In addition, several kinds of PET (clear, blue, coloured, opaque, and boxes) were correctly classified as PET class, and PE samples with different branching degrees were properly separated.

8.
Front Chem ; 6: 60, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29616212

RESUMO

In this work a new mesoporous adsorbent material obtained from a natural, high abundant raw material and a high volume industrial by-product is presented. The material is consolidated by the gelling properties of alginate and by decomposition of sodium-bicarbonate controlled porosity at low temperatures (70-80°C) at different scale lengths. The structural, thermal, and morphological characterization shows that the material is a mesoporous organic-inorganic hybrid. The material is tested as adsorbent, showing high performances. Methylene blue, used as model pollutant, can be adsorbed and removed from aqueous solutions even at a high concentration with efficiency up to 94%. By coating the material with a 100 nm thin film of titania, good photodegradation performance (more than 20%) can be imparted. Based on embodied energy and carbon footprint of its primary production, the sustainability of the new obtained material is evaluated and quantified in respect to activated carbon as well. It is shown that the new proposed material has an embodied energy lower than one order of magnitude in respect to the one of activated carbon, which represents the gold standards. The versatility of the new material is also demonstrated in terms of its design and manufacturing possibilities In addition, this material can be printed in 3D. Finally, preliminary results about its ability to capture diesel exhaust particulate matter are reported. The sample exposed to diesel contains a large amount of carbon in its surface. At the best of our knowledge, this is the first time that hybrid porous materials are proposed as a new class of sustainable materials, produced to reduce pollutants in the wastewaters and in the atmosphere.

9.
Talanta ; 181: 165-171, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29426496

RESUMO

In this work, we present the validation of the chemical method for total reflection X-ray fluorescence (TXRF) analysis of water, proposed as a standard to the International Standard Organization. The complete experimental procedure to define the linear calibration range, elements sensitivities, limits of detection and quantification, precision and accuracy is presented for a commercial TXRF spectrometer equipped with Mo X-ray tube. Least squares linear regression, including all statistical tests is performed separately for each element of interest to extract sensitivities. Relative sensitivities with respect to Ga, as internal standard, are calculated. Accuracy and precision of the quantification procedure using Ga as internal standard is evaluated with reference water samples. A detailed discussion on the calibration procedure and the limitation of the use of this method for quantitative analysis of water is presented.

10.
J Aerosol Sci ; 122: 1-10, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30662085

RESUMO

This work reports on qualitative and semi-quantitative elemental analysis of particulate matter (PM) collected on PTFE membrane filters, for a source apportionment study conducted in Brescia (Italy). Sampling was undertaken in a residential area where an increase in Mn emissions has been highlighted by previous studies. Filters are measured by means of X-ray Fluorescence (XRF) based techniques such as micro-XRF and grazing incidence XRF using synchrotron radiation, Mo or W excitation sources, after applying an automatized sample preparation method. A heterogeneous distribution in PM shape, size and composition was observed, with features typical of anthropogenic sources. XRF measurements performed at various incidence angle, on large areas and different experimental setup were reproducible. The results demonstrate a successful comparison of the various XRF instrumentation, and the decrease in Mn content with the distance away from the identified emission source. This work highlights the potentialities of the presented approach to provide a full quantitative analysis, and ascertain its suitability for providing a direct, fast, simple and sensitive elemental analysis of filters in source apportionment studies and screening purposes.

11.
Chemosphere ; 178: 504-512, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28347914

RESUMO

This work shows that total reflection X-ray fluorescence (TXRF) is a fast, easy and successful tool to determine the presence of potentially toxic elements in atmospheric aerosols precipitations on tree leaves. Leaves are collected in eleven parks of different geographical areas of the Brescia city, Northern Italy, for environmental monitoring purposes. Two sample preparation procedures are considered: microwave acid digestion and the novel SMART STORE method for direct analysis. The latter consists in sandwiching a portion of the leaf between two organic foils, metals free, to save it from contamination and material loss. Mass composition of macro, micro and trace elements is calculated for digested samples, while relative elemental amount are obtained from direct analysis. Washed and unwashed leaves have a different composition in terms of trace elements. Differentiation occurs according to Fe, Pb and Cu contributions, considered as most representative of air depositions, and probably related to anthropogenic sources. Direct analysis is more representative of the composition of air precipitations. Advantages and drawbacks of the presented methods of sample preparation and TXRF analysis are discussed. Results demonstrate that TXRF allows to perform accurate and precise quantitative analysis of digested samples. In addition, direct analysis of leaves may be used as a fast and simple method for screening in the nanograms range.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Folhas de Planta/química , Espectrometria por Raios X/métodos , Oligoelementos/análise , Aerossóis/análise , Itália , Árvores/química
12.
Environ Sci Pollut Res Int ; 21(23): 13208-14, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24122164

RESUMO

Total reflection x-ray fluorescence spectroscopy (TXRF) is proposed for the elemental chemical analysis of crustal environmental samples, such as sediments and soils. A comparative study of TXRF with respect to flame atomic absorption spectroscopy and inductively coupled plasma optical emission spectroscopy was performed. Microwave acid digestion and suspension preparation methods are evaluated. A good agreement was found among the results obtained with different spectroscopic techniques and sample preparation methods for Cr, Mn, Fe, Ni, Cu, and Zn. We demonstrated that TXRF is suitable for the assessment of environmental contamination phenomena, even if the errors for Pb, As, V, and Ba are ingent.


Assuntos
Poluentes do Solo/análise , Solo/química , Monitoramento Ambiental/métodos , Poluição Ambiental , Sedimentos Geológicos/análise , Metais Pesados/análise , Metais Pesados/química , Micro-Ondas , Poluentes do Solo/química , Espectrometria por Raios X , Espectrofotometria Atômica
13.
Neurotoxicology ; 33(4): 687-96, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22322213

RESUMO

BACKGROUND AND OBJECTIVE: Increased prevalence of Parkinsonism was observed in Valcamonica, Italy, a region impacted by ferroalloy plants emissions containing manganese and other metals for a century until 2001. The aim of this study was to assess neurobehavioral functions in adolescents from the impacted region and the reference area of Garda Lake. METHODS: Adolescents age 11-14 years were recruited through the school system for neuro-behavioral testing. Metals including manganese, lead, iron, zinc, copper were measured in airborne particulate matter collected with 24-h personal samplers, and in soil, tap water, blood, urine and hair. Independent variables included parental education and socio-economic status, children's body mass index, number of siblings, parity order, smoking and drinking habits. RESULTS: A total of 311 subjects (49.2% females), residing in either the exposed (n=154) or the reference (n=157) area participated. Average airborne and soil manganese were respectively 49.5 ng/m(3) (median 31.4, range 1.24-517) and 958 ppm (median 897, range 465-1729) in the impacted area, and 27.4 ng/m(3) (median 24.7, range 5.3-85.9) ng/m(3) and 427 ppm (median 409 range 160-734) in the reference area. Regression models showed significant impairment of motor coordination (Luria-Nebraska test, p=0.0005), hand dexterity (Aiming Pursuit test, p=0.0115) and odor identification (Sniffin' task, p=0.003) associated with soil manganese. Tremor intensity was positively associated with blood (p=0.005) and hair (p=0.01) manganese. CONCLUSION: Historical environmental exposure to manganese from ferroalloy emission reflected by the concentration in soil and the biomarkers was associated with sub-clinical deficits in olfactory and motor function among adolescents.


Assuntos
Desenvolvimento do Adolescente/efeitos dos fármacos , Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental/efeitos adversos , Ferro/efeitos adversos , Intoxicação por Manganês/etiologia , Manganês/efeitos adversos , Atividade Motora/efeitos dos fármacos , Sistema Nervoso/efeitos dos fármacos , Transtornos do Olfato/induzido quimicamente , Olfato/efeitos dos fármacos , Tremor/induzido quimicamente , Adolescente , Fatores Etários , Biomarcadores/análise , Criança , Estudos Transversais , Monitoramento Ambiental , Feminino , Humanos , Itália , Modelos Lineares , Modelos Logísticos , Masculino , Intoxicação por Manganês/diagnóstico , Intoxicação por Manganês/fisiopatologia , Análise Multivariada , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/fisiopatologia , Testes Neuropsicológicos , Transtornos do Olfato/fisiopatologia , Características de Residência , Medição de Risco , Fatores de Risco , Tremor/diagnóstico
14.
J Environ Prot (Irvine, Calif) ; 3(5): 374-385, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-27818841

RESUMO

Emissions of manganese (Mn), lead (Pb), iron (Fe), zinc (Zn), copper (Cu) from ferro-alloy operations has taken place in Valcamonica, a pre-Alp valley in the province of Brescia, Italy, for about a century until 2001. Metal concentrations were measured in the soil of local home gardens and in the cultivated vegetables. Soil analysis was carried out using a portable X-Ray Fluorescence (XRF) spectrometer in both surface soil and at 10 cm depth. A subset of soil samples (n = 23) additionally was analysed using the modified BCR sequential extraction method and ICP-OES for intercalibration with XRF (XRF Mn = 1.33 * total OES Mn - 71.8; R = 0.830, p < 0.0001). Samples of salads (Lactuca sativa and Chichorium spp.) were analyzed with a Total Reflection X-Ray Fluorescence (TXRF) technique. Vegetable and soil metal measurements were performed in 59 home gardens of Valcamonica, and compared with 23 gardens from the Garda Lake reference area. Results indicate significantly higher levels of soil Mn (median 986 ppm vs 416 ppm), Pb (median 46.1 ppm vs 30.2 ppm), Fe (median 19,800 ppm vs 13,100 ppm) in the Valcamonica compared to the reference area. Surface soil levels of all metals were significantly higher in surface soil compared to deeper soil, consistent with atmospheric deposition. Significantly higher levels of metals were shown also in lettuce from Valcamonica for Mn (median 53.6 ppm vs 30.2) and Fe (median 153 vs 118). Metals in Chichorium spp. did not differ between the two areas. Surface soil metal levels declined with increasing distance from the closest ferroalloy plant, consistent with plant emissions as the source of elevated soil metal levels. A correlation between Mn concentrations in soil and lettuce was also observed. These data show that historic ferroalloy plant activity, which ended nearly a decade before this study, has contributed to the persistence of increased Mn levels in locally grown vegetables. Further research is needed to assess whether this increase can lead to adverse effects in humans and plants especially for Mn, an essential element that can be toxic in humans when exceeding the homeostatic ranges.

15.
Talanta ; 84(1): 192-8, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21315919

RESUMO

Total Reflection X-ray Fluorescence (TXRF) is a well-established technique for chemical analysis, but it is mainly employed for quality control in the electronics semiconductor industry. The capability to analyze liquid and uniformly thin solid samples makes this technique suitable for other applications, and especially in the very critical field of environmental analysis. Comparison with standard methods like inductively coupled plasma (ICP) and atomic absorption spectroscopy (AAS) shows that TXRF is a practical, accurate, and reliable technique in occupational settings. Due to the greater sensitivity necessary in trace heavy metal detection, TXRF is also suitable for environmental chemical analysis. In this paper we show that based on appropriate standards, TXRF can be considered for non-destructive routine quantitative analysis of environmental matrices such as air filters. This work has been developed in the frame of the EU-FP6 PHIME (Public Health Impact of long-term, low-level Mixed element Exposure in susceptible population strata) Integrated Project (www.phime.org). The aim of this work was to investigate Mn air pollution in the area of Vallecamonica (Italy).


Assuntos
Poluição do Ar/análise , Monitoramento Ambiental/métodos , Filtração/métodos , Manganês/análise , Material Particulado/análise , Ligas/química , Indústrias , Ferro/química , Itália , Manganês/química , Espectrometria por Raios X
16.
J Environ Monit ; 11(9): 1579-85, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19724825

RESUMO

Ferroalloy industries have been active for more than a century in the province of Brescia, Northern Italy. Air emission and water discharge have contaminated the environment in the surroundings of four plants with several metals including manganese. The presence of manganese in this region is especially interesting, because of the observed relationship between manganese exposure and Parkinsonism in a previous epidemiological survey. The aim of this study was represented by an initial screening of metal exposure in this area, using a geographic information system. X-ray fluorescence (XRF) was applied to identify heavy metals in deposited dust samples, collected in representative residential households throughout the province. The results were interpreted through a systematic mapping of all municipal districts of the Brescia province. A more frequent distribution of manganese and other metals was observed in the municipalities where the plants were located and differences in the geochemical and anthropogenic origin of metals were discussed, according to the point sources.


Assuntos
Poeira/análise , Exposição Ambiental/análise , Poluentes Ambientais/análise , Metais Pesados/análise , Espectrometria por Raios X/métodos , Monitoramento Ambiental , Sistemas de Informação Geográfica , Geografia , Ferro/análise , Itália , Manganês/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA